Currently Viewing:
AMCP 2017
Currently Reading
Dr Jennifer Graff on How Payers Make Decisions
August 01, 2017
Dr Jacqueline Glover: Financial Knowledge Is Part of Informed Consent
July 10, 2017
Laura Topor Explains the Value of Real-Time Benefit Transactions
June 27, 2017
Dr Jacqueline Glover: Clinicians' Obligations of Justice Regarding Costs of Care
June 24, 2017
Dr Lou Garrison Discusses Challenges of Working With Real-World Data
June 16, 2017
Dr Neil Minkoff Explains How 340B Impacts Pharmacies and Payers Differently
June 15, 2017
Dr Matthew Pickering on Working With Health Plans on Measure Implementation
June 09, 2017
Laura Topor: Clearing Up Misconceptions About e-Prescribing
June 07, 2017
Dr Jacqueline Glover Discusses the Complicated Balance of Ethics in Drug Trials
June 05, 2017
Dr Richard J. Willke Discusses Challenges of Working With Real-World Data
June 02, 2017
Susan A. Cantrell Explains the Necessity of Pre- and Post-Approval Communications
May 31, 2017
Dr Neil Minkoff Discusses Evolution and Consequences of 340B Programs
May 30, 2017
Dr Doug Hillblom Discusses Legislative Pushes Toward e-Prescribing
May 25, 2017
Dr Matthew Pickering Describes Challenges of New Measure Implementation
May 24, 2017
Dr Aimee Tharaldson Discusses the Orphan Drug Approval Trend
May 22, 2017
Dr Gail Bridges on the Importance of Real-World Results Matching Clinical Trial Outcomes
May 21, 2017
Dr Liz Zhou Discusses Real-World Implications of Toujeo Switching Trial
May 19, 2017
Dr Richard J. Willke on the Value of Real-World Data for Health Plans
May 18, 2017
Dr Lou Garrison on the Discussions Surrounding Outcomes-Based Arrangements
May 17, 2017

Repatha Offers Additional LDL-C Reduction in a Convenient Dosage Form

Michael R. Page, PharmD, RPh
Richard Mullvain, RPh, BCPS (AQC), CCCC, a cardiovascular clinical pharmacist and expert in cardiovascular care at the Essentia Health Heart & Vascular Center in Duluth, Minnesota, delivered a focused clinical review on the topic of the PCSK9 inhibitor Repatha (evolocumab), and its impact on low-density lipoprotein cholesterol (LDL-C).
The safety of Repatha has been studied in 2651 patients exposed to therapy across 8 placebo-controlled trials. Adverse reactions observed over a 52-week trial and seven 12-week trials included local injection site reactions, which occurred in 3.2% of patients receiving Repatha versus 3% of patients receiving placebo; allergic reactions, which occurred in 5.1% of patients receiving Repatha versus 4.7% of patients receiving placebo; and neurocognitive adverse events, which were reported at a rate of 0.2% or less among both Repatha-treated patients and placebo-treated patients.3
 
Other important safety considerations include the potential for very low LDL-C levels and musculoskeletal adverse reactions. LDL-C levels less than 25 mg/dL were achieved in 1988 patients who received treatment with Repatha. Although there were no adverse consequences in patients with very low LDL-C levels, the long-term effects of very low LDL-C levels remains unknown. Musculoskeletal adverse reactions occurred in 14.3% of patients receiving Repatha versus 12.8% of patients receiving placebo. The most common adverse reactions occurring at a higher incidence with Repatha treatment were limited to back pain, arthralgia, and myalgia. Notably, there is some potential for immunogenicity with Repatha, as with all other therapeutic protein medications.3
 
Dosages of Repatha include a 140-mg subcutaneous injection administered every 2 weeks, and a 420-mg subcutaneous injection administered every month. In clinical trials, these dosage regimens led to similar LDL-C reductions, without any need for titration. Also available is the Repatha Pushtronex system, which is a single-use on-body infusor with prefilled cartridges. This device securely adheres to the body for hands-free subcutaneous administration of a monthly treatment (430 mg/3.5 mL) over the course of 9 minutes. A single-use prefilled autoinjector, Repatha SureClick, delivers a 140 mg/mL dose subcutaneously over 15 seconds. The SureClick autoinjector may be more appropriate for patients who are comfortable self-administering therapy with a handheld device. Both treatment formulations may be stored at room temperature for up to 30 days before use.3
 
Repatha is indicated as an adjunct to diet and maximally tolerated statin therapy for treatment of adults with heterozygous familial hypercholesterolemia or clinical ASCVD who require additional lowering of LDL-C. Repatha is also indicated as an adjunct to diet and other LDL-lowering therapies (eg, statins, ezetimibe, LDL apheresis) for the treatment of patients with homozygous familial hypercholesterolemia who require additional lowering of LDL-C. The effect of Repatha on cardiovascular morbidity and mortality has not been determined. Repatha is contraindicated in patients with a history of a serious hypersensitivity reaction to Repatha.3
 
In patients with clinical ASCVD or familial hypercholesterolemia who require additional LDL-C reduction, Repatha is a treatment option that has demonstrated LDL-C–lowering efficacy. Repatha may be administered via a once monthly or twice monthly subcutaneous injection, with no dose titration needed.
 
 
 
References
1. Mullvain R. Repatha (evolocumab): A Focused Clinical Review. Presented at the Academy of Managed Care Pharmacy (AMCP) 2017 Annual Meeting; March 27-30, 2017; Denver, CO.
2. Stone NJ, Robinson JG, Lichtenstein AH, et al; American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(25 pt B):2889-2934. doi: 10.1016/j.jacc.2013.11.002.
3. Repatha [package insert]. Thousand Oaks, CA: Amgen, Inc; July 2016.
4. Robinson JG, Nedergaard BS, Rogers WJ, et al; LAPLACE-2 Investigators. Effect of evolocumab or ezetimibe added to moderate- or high-intensity statin therapy on LDL-C lowering in patients with hypercholesterolemia: the LAPLACE-2 randomized clinical trial. JAMA. 2014;311(18):1870-1882. doi: 10.1001/jama.2014.4030.
5. Blom DJ, Hala T, Bolognese M, et al; DESCARTES Investigators. A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N Engl J Med. 2014;370(19):1809-1819. doi: 10.1056/NEJMoa1316222.
6. Raal FJ, Stein EA, Dufour R, et al; RUTHERFORD-2 Investigators. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385(9965):331-340. doi: 10.1016/S0140-6736(14)61399-4.
7. Raal FJ, Honarpour N, Blom DJ, et al; TESLA Investigators. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385(9965):341-350. doi: 10.1016/S0140-6736(14)61374-X.


 
Copyright AJMC 2006-2017 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
x
Welcome the the new and improved AJMC.com, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up
×

Sign In

Not a member? Sign up now!