Disease Management Produces Limited Quality-of-life Improvements in Patients With Congestive Heart Failure: Evidence From a Randomized Trial in Community-dwelling Patients

Published Online: November 01, 2005
Brad Smith, PhD; Emma Forkner, MS; Barbara Zaslow, BSN; Richard A. Krasuski, MD; Karl Stajduhar, MD; Michael Kwan, MD; Robert Ellis, MD; Autumn Dawn Galbreath, MD; and Gregory L. Freeman, MD

Background: Disease management programs are reported to improve clinical and quality-of-life outcomes while simultaneously lowering healthcare costs.

Objective: To examine the effectiveness of disease management in improving health-related quality of life (HRQL) among patients with heart failure beyond 12 months.

Methods: A total of 1069 community-dwelling patients 18 years and older in South Texas with echocardiographic evidence of congestive heart failure were randomly assigned to disease management, augmented disease management, and control groups. They were followed up 18 months. Patients in the control group received usual care. Patients in the intervention groups were assigned a registered nurse as a disease manager who performed telephonic patient education and medication management. Health-related quality-of-life data (based on the Medical Outcomes Study 36-Item Short-Form Health Survey [SF-36]) were collected 4 times, at 6-month intervals.

Results: Disease management has a limited effect on HRQL. Analysis of the SF-36 health transition measure showed a positive effect of the intervention on self-reported improvement in health at 6 months and at 12 months (P = .04 and P = .004, respectively). However, no effect of disease management was observed across any of the SF-36 components. Women and patients with diastolic heart failure had poorer HRQL scores.

Conclusions: Participation in disease management has little effect on HRQL outcomes in congestive heart failure. Beneficial effects on the SF-36 scale scores seen at 6 and 12 months were not sustained. Therefore, it is unclear whether disease management can provide long-term improvement in HRQL for patients with congestive heart failure.

(Am J Manag Care. 2005;11:701-713)

The effects of congestive heart failure (CHF) management on the economics of healthcare systems and on the lives of patients have been well documented.1,2 As a major component of inpatient and outpatient medical expenditures, the burden and expense of treating the disease are likely to increase further because of extensions in the life spans of patients with CHF and because of the aging of the US population.3,4

The prevalence and cost of treating CHF have motivated payers and healthcare policy makers to seek new methods of controlling costs. In the last decade, disease management programs, defined by the Disease Management Association of America as a "system of coordinated healthcare interventions and communications for populations in which patient self-care efforts are significant,"5 have been reported to reduce the cost of caring for chronically ill patients, while delivering improved outcomes.6 Given the widespread desire to control costs, disease management programs are rapidly growing in popularity. Recent statistics show that 88% of health maintenance organizations have implemented at least 1 disease management program, and about 150 companies providing this service have been established.7 Despite the fact that disease management initiatives are increasingly common, there have been few large-scale randomized controlled trials testing the effectiveness of such programs.

The extant evidence on the effectiveness of disease management in CHF programs is mixed.8,9 Most of the 11 randomized controlled trials reviewed by McAlister and colleagues10 showed that disease management programs in CHF produced modest reductions in different hospitalization measures, but no evidence of a mortality benefit was seen. The effect of disease management programs on health-related quality of life (HRQL) has been less well explored than clinical outcomes. Only 5 of the 11 trials reviewed by McAllister et al included assessments of HRQL, and in only one case was it shown that patients in the intervention group reported significant improvement. More recently, studies11-18 have shown beneficial and statistically significant effects of participation in disease management on HRQL. This body of research, however, has several important limitations. Some studies12,14 have been quasi-experimental, other studies15,18 have had short (3-6 months) follow-up periods, while yet other studies11,13 implemented narrowly focused interventions (eg, only patient education or weight management). Although some sex differences in HRQL have been noted,19,20 few studies have examined ways in which the effect of disease management on HRQL outcomes may differ by sex. Still fewer studies have explored differences in HRQL outcomes according to cardiac dysfunction (systolic vs diastolic).

It is unfortunate that HRQL has not been a central focus in studies of disease management given its importance in the treatment of patients with heart failure. The causal relationship between heart failure and HRQL outcomes is bidirectional. Studies have shown that depression and psychological distress are expected sequelae of heart failure,21,22 due to heightened uncertainty23 and perceived loss of control.24 Not only is poor mental health an anticipated comorbidity of heart failure, but also there is strong evidence that HRQL has an important causal link to morbidity and mortality in CHF patients.25 Further underscoring the importance of HRQL in heart failure is patient opinion. Stanek and colleagues26 observed that patients place a higher value on symptom reduction vs extended survival. In the present study, we assess the effect of a program of disease management on HRQL in a large, decentralized community-based population of patients with CHF.



The South Texas Congestive Heart Failure Disease Management Project was a single-center randomized controlled clinical trial that ran from 1999 to 2003. It was conducted by The University of Texas Health Science Center at San Antonio, in partnership with Wilford Hall Medical Center, Brooke Army Medical Center, the South Texas Veterans Health Care System, TRICARE Southwest (Region 6), and University Health System, all in San Antonio. Potential patients were identified through lists generated from the databases of partner institutions filtered for an International Classification of Diseases, Ninth Revision, Clinical Modification diagnosis code for CHF. A list of potential participants was also obtained through an academic partnership with the Centers for Medicare & Medicaid Services, Baltimore, Md. These patients were contacted by letter and were offered an opportunity to participate in the study. Congestive heart failure symptoms were determined by a screening questionnaire containing 9 broad items regarding a patient's history of CHF symptoms, such as lower extremity edema and shortness of breath. A positive answer to any of the history questions qualified a patient for further screening through echocardiography. Patients with systolic dysfunction qualified for the study if their ejection fraction was 49% or less; patients with diastolic dysfunction qualified if their echocardiogram showed evidence of left ventricular hypertrophy, defined as a left ventricular wall measurement of at least 1.2 cm in any dimension, an E to A reversal, or an abnormal transmitral flow pattern.

Among the patients who responded to our outreach and had a history of CHF symptoms, we performed or obtained screening echocardiograms on 1874 patients. Of this group, 125 (6.7%) were eligible but refused to participate, 564 (30.1%) did not qualify because of a lack of echocardiogram verification of CHF or the presence of various exclusion conditions, while 116 (6.2%) did not respond to further contact, died after their screening echocardiogram, or were unable to be enrolled before the deadline was reached. In total, the study enrolled 1069 men and women (57.0% of the 1874 patients who were screened) 18 years and older who had symptoms of CHF and had documented systolic or diastolic dysfunction.

Study Design

Approval was obtained from the institutional review boards of all partner institutions. After initial screening for eligibility, informed consent was obtained from each subject. Patients were followed for 18 months and were randomly assigned to 1 of the following 3 study groups: usual care (control group), disease management, and augmented disease management. Given the external nature of the intervention, it was not possible to blind patients or staff to the identity of the group to which they had been randomized. All subjects underwent an echocardiogram at baseline and at 18 months and were assessed every 6 months by medical history, physical examination, 6-minute walk test, and serum chemistries. Subjects in the disease management group were assigned a disease manager, a registered nurse with specialized cardiac training, who performed telephonic patient education and medication management in conjunction with the patient's primary care provider. Subjects in the augmented disease management group received the same disease management services but also were issued a blood pressure cuff, a finger pulse oximeter, and an activity monitor to provide data for the generation of additional hypotheses. Patients received training on device use at their clinic visits and provided data from activity monitors when the devices were returned to the office. No data from the augmented disease management group were transmitted to patients' personal physicians. Subjects in both intervention arms received bathroom scales and were asked to weigh themselves daily. Subjects in the control group had no contact with disease managers and received only those changes to their care that were ordered by their personal physicians.

Disease management services were provided through a contract with CorSolutions, Rosemont, Ill, a disease management vendor with experience in providing disease management services to patients with CHF. Disease managers followed the MULTIFIT27-29 disease management proprietary protocol, developed by CorSolutions. Under the MULTIFIT protocol, the patients' care was directed by their physicians, with recommendations made by disease managers in accord with the American College of Cardiology/American Heart Association guidelines for the treatment of CHF.30,31 The recommendations were part of the study protocol, but because patients were drawn from many different funding sources and healthcare systems, patients' personal physicians were free to implement or to ignore the recommendations. Critical components of the disease managers' recommendations included initiation and upward titration of all recommended drug classes for CHF, including angiotensin-converting enzyme inhibitors, b-blockers, and diuretics. For patients in the New York Heart Association (NYHA) functional classes III and IV, the recommended drugs also included spironolactone. In addition, disease managers recommended the initiation of antihyperlipidemic and antianginal medications as indicated.

PDF is available on the last page.
Adult ADHD Compendium
COPD Compendium
Dermatology Compendium
Diabetes Compendium
GI Compendium
Immuno-oncology Compendium
Lipids Compendium
MACRA Compendium
Oncology Compendium
Pain Compendium
Reimbursement Compendium
Rheumatoid Arthritis Compendium
Know Your News
HF Compendium
Managed Care PODCAST