Currently Viewing:
The American Journal of Managed Care July 2015
Low-Value Care for Acute Sinusitis Encounters: Who's Choosing Wisely?
Adam L. Sharp, MD, MS; Marc H. Klau, MD, MBA; David Keschner, MD, JD; Eric Macy, MD, MS; Tania Tang, PhD, MPH; Ernest Shen, PhD; Corrine Munoz-Plaza, MPH; Michael Kanter, MD; Matthew A. Silver, MD;
Usefulness of Pharmacy Claims for Medication Reconciliation in Primary Care
Dominique Comer, PharmD, MS; Joseph Couto, PharmD, MBA; Ruth Aguiar, BA; Pan Wu, PhD; and Daniel J. Elliott, MD, MSCE
No Longer a Unicorn: Improving Health Through Accountable Care Organizations
Risa Lavizzo-Mourey, MD, MBA, president and CEO, The Robert Wood Johnson Foundation
ACA-Mandated Elimination of Cost Sharing for Preventive Screening Has Had Limited Early Impact
Shivan J. Mehta, MD, MBA; Daniel Polsky, PhD; Jingsan Zhu, MBA; James D. Lewis, MD, MSCE; Jonathan T. Kolstad, PhD; George Loewenstein, PhD; and Kevin G. Volpp, MD, PhD
Determinants of Medicare Plan Choices: Are Beneficiaries More Influenced by Premiums or Benefits?
Paul D. Jacobs, PhD; and Melinda B. Buntin, PhD
Acupuncture and Chiropractic Care: Utilization and Electronic Medical Record Capture
Charles Elder, MD, MPH; Lynn DeBar, PhD, MPH; Cheryl Ritenbaugh, PhD, MPH; William Vollmer, PhD; Richard A. Deyo, MD, MPH; John Dickerson, PhD; and Lindsay Kindler, PhD, RN
Worksite Medical Home: Health Services Use and Claim Costs
Christopher Conover, PhD; Rebecca Namenek Brouwer, MS; Gale Adcock, MSN, RN, FNP-BC, FAANP; David Olaleye, PhD, MSCe; John Shipway, BS; and Truls Østbye, MD, PhD
Effectiveness and Cost of Influenza Vaccine Reminders for Adults With Asthma or Chronic Obstructive Pulmonary Disease
Jo Ann Shoup, MS; Carlos Madrid, MA; Caroline Koehler, RN, MSN; Cynthia Lamb, BS, RN; Jennifer Ellis, MSPH; Debra P. Ritzwoller, PhD; and Matthew F. Daley, MD
Currently Reading
The Value of Colonoscopic Colorectal Cancer Screening of Adults Aged 50 to 64
Kathryn Fitch, RN, MEd; Bruce Pyenson, FSA, MAAA; Helen Blumen, MD, MBA; Thomas Weisman, MD, MBA; and Art Small, MD
Colorectal Cancer Screening in the 21st Century: Where Do We Go From Here?
Jennifer K. Maratt, MD; and Sameer D. Saini, MD, MS
Pilot of Decision Support to Individualize Colorectal Cancer Screening Recommendations
Amy R. Schwartz, MD; Forrest L. Levin, MS; Joseph A. O’Neil, Jr, BS; and R. Scott Braithwaite, MD, MSc

The Value of Colonoscopic Colorectal Cancer Screening of Adults Aged 50 to 64

Kathryn Fitch, RN, MEd; Bruce Pyenson, FSA, MAAA; Helen Blumen, MD, MBA; Thomas Weisman, MD, MBA; and Art Small, MD
Screening commercially insured individuals for colorectal cancer is a high-value service, costing less per year of life saved than breast or cervical cancer screening.
ABSTRACT

Objectives: The purpose of this study was to determine the value of life-years saved due to colorectal cancer (CRC) screening with colonoscopy for the population aged 50 to 64 years. The cost perspective is that of a private (commercial) insurer, while the value perspective includes survival past age 65 years, when most of the US population is insured by Medicare. We focused on colonoscopy because it is not only diagnostic but also therapeutic; because positive results on other screening tests generally are followed up with colonoscopy; and to build on previous study results that colonoscopy is ultimately more cost-effective than other screening, even considering its expense. 

Study Design: Monte Carlo simulation. 

Methods: Using a large multi-state cancer registry, a large national administrative claims database, and a model of CRC development based on published clinical literature, we estimated the impact of screening with colonoscopy on incidence of CRC, aggregate cost of colonoscopies and CRC, and life-years saved. 

Results: Assuming 2013 commercial reimbursement rates for screening and treatment, we found that increasing screening adherence from 50% to 100% would cost about $3 per member per month (2013 US$) and reduce CRC treatment costs by about $1 per member per month. The cost per life-year saved is approximately $12,000, an amount that is much lower than for cervical or breast cancer screening and comparable to lung cancer screening. 

Conclusions: Our results suggest that commercial insurers and employers should promote CRC screening as a high-value service. Promoting such screening through high-quality, low-cost providers would be an exemplar of efficient system innovation.
 
Am J Manag Care. 2015;21(7):e430-e438
Take-Away Points
 
Screening commercially insured individuals for colorectal cancer with colonoscopy is a high-value service:
  • The study perspective is that of a third-party payer for a working-age population.
  • The study uses standard actuarial methodology that payers find understandable and relevant.
  • Cost per year of life saved is approximately $12,000—less than for breast or cervical cancer.
  • Costs of colonoscopy and cancer care are up-to-date and inclusive.
  • Effects on mortality are estimated past age 65 years.
  • Sensitivity analysis demonstrates cost-effectiveness within a wide range of assumptions about costs and benefits.
Colorectal cancer (CRC) is a common and lethal cancer. In the United States, for those cancers that affect both genders, it is the third most common cancer and the second most common cause of cancer-related deaths. In 2009, the incidence rate for CRC was 42.5 cases per 100,000 population, and the mortality rate was 15.7 per 100,000 population.1 Fortunately, many cases of CRC and CRC-related deaths are preventable through screening and early detection activities.

Screening and prevention activities for CRC have evolved over the past 2 decades. The first US guidelines for CRC screening were published in 1989.2 In 2012, the American College of Physicians published a synthesis of guidance statements from other organizations,3 and a multi-specialty society task force published a consensus update for surveillance after screening and polypectomy.4

The natural history of CRC is that approximately 85% of CRC cases arise from adenomas—benign lesions of the colon—and these adenomas leading to CRC take approximately 10 years to grow and progress to localized CRC.2 From localized CRC, average progression to regional CRC takes approximately 2 years, and from regional to distant (metastatic) takes an additional 2 years.5

Screening for CRC is valuable because detection and removal of adenomas and localized CRC interfere with this natural history, preventing CRC and CRC-related deaths. Several techniques have been recommended for CRC screening. Guaiac or fecal immunochemical testing for occult blood in the stool (FOBT) is based on the fact that CRC and adenomas may bleed, and fecal DNA testing is based on the fact that CRC may shed abnormal genetic material into the stool. Virtual colonoscopy using low-dose computed tomography (CT) is an advanced imaging technique that relies on the distortion of colonic lining by CRC or adenomas. Endoscopic techniques (sigmoidoscopy and colonoscopy) are based on direct observation of the colon for CRC and adenomas. Colonoscopy is the only screening and detection technique that examines the entire colon, and simultaneously enables removal of adenomas.

Colonoscopy screening programs have been shown to decrease CRC mortality. The National Polyp Study showed that colonoscopy with removal of adenomatous polyps could prevent subsequent CRC.6 Long-term follow-up of these patients found a 53% reduction in CRC mortality compared with that expected based on Surveillance Epidemiology and End Results Program (SEER) data for CRC mortality in the general population.7

A decision analysis commissioned to inform US Preventive Services Task Force (USPSTF) guidelines used 2 microsimulation models to estimate life-years gained from colonoscopy screening relative to no screening. The decision analysis was from a societal perspective, studied effects over the entire lifetime of individuals, and did not include costs of screening or treatment. This analysis supported CRC screening with colonoscopy every 10 years starting at age 50 years.8

The Healthy People 2020 target is that 70.5% of adults aged 50 to 75 years be up-to-date with this recommended cancer screening. As of 2010, the National Health Interview Survey found that 62% reported ever having a colonoscopy or sigmoidoscopy, and 13% reported home-based FOBT in the previous 2 years.9 Similarly, in 2011, Healthcare Effectiveness Data and Information Set (HEDIS) measures of CRC screening showed that 62.4% of the commercially insured health maintenance organization (HMO) population had been appropriately screened, and 54.6% of the commercial preferred provider organization population had been appropriately screened, based on USPSTF recommendations.10

The purpose of this study was to determine the value of life-years saved due to CRC screening with colonoscopy for the population aged 50 to 64 years. Our price perspective is that of a commercial payer (including amounts paid by patients), while our value perspective includes survival past age 65 years, when most of the US population is insured by Medicare. We used recent adjudicated commercial claims data to calculate the cost of CRC screening and cost of patients for the 4 years after CRC diagnosis by stage. We focused on colonoscopy because it is not only diagnostic but also therapeutic; because positive results on other screening tests generally are followed up with colonoscopy; and to build on previous study results that colonoscopy is ultimately more cost-effective than other screening, even considering its expense.8,11

STUDY DATA AND METHODS

Our model was designed to estimate the cost and cost-benefit of CRC screening with colonoscopy for US adults aged 50 to 64 years—those among the working-age population for whom CRC screening is recommended. This target population consists of about 23% of the 158 million US individuals who are commercially insured and aged less than 65 years (approximately 36 million people). We applied standard actuarial methods that are often used when evaluating insurance features or coverage. Population details were derived from 2010 and earlier US Census Bureau projections.

Data Sources and Methods for Cost of Colonoscopy

We used Truven Health MarketScan Research Databases 2010-2011, a large commercial database of paid health benefits claims, to develop the cost of colonoscopy. (See the eAppendix [available at www.ajmc.com] for the colonoscopy codes used.) The cost of a screening colonoscopy can include professional fees for both the procedure and anesthesia, as well as facility fees, laboratory/pathology services, and supplies. To capture costs comprehensively, we selected patients aged 50 to 64 years undergoing a colonoscopy and tabulated all costs occurring on the day of the colonoscopy. We did not include any follow-up costs that may have occurred on subsequent days. (See Table 1 for the cost of colonoscopy.)

Data Sources and Methods for Cost, Incidence, and Mortality of Colorectal Cancer by Stage

We developed the cost of CRC for 3 stages to approximate the SEER categorization into local, regional, and distant, where local is the most curable and distant (metastatic) is the most fatal. We used Truven Health MarketScan Research Databases 2007-2011 to develop CRC costs by stage. Because cancer stage is not directly identified in standard claims coding, we used treatment surrogates to categorize the stage at diagnosis. (See the eAppendix for the algorithm used.) CRC cases were identified as new if the individual had no claims coded with cancer in the 12 months prior to diagnosis. All costs of new cases by each of the 3 stages were tabulated by month from diagnosis for up to 4 years. Because the database does not distinguish death from other causes of insurance termination, we composited the monthly costs using a survivorship function developed from SEER data. Table 1 shows the cost of CRC by stage and year from index diagnosis date. Mortality by year following diagnosis for each stage was developed by incident age from SEER data. Table 2 shows the CRC mortality rates.

Mortality rates for people without CRC were obtained from the CDC National Vital Statistics Reports. Costs for people without CRC were developed from Truven Health MarketScan Research Databases data by age and sex.

Shifting the stage of detection from later stages of CRC to earlier stages is one of the values of screening. Underlying the calculation of stage shifting is a model of the natural history of CRC development in the absence of interference. Specifically, we make assumptions that localized CRC arises from adenomas that, on average, have been present 10 years, and that the time from local to regional CRC is 2 years and from regional to distant CRC is 2 years.2,5 The time in each stage is referred to as the “sojourn time.”

Because colonoscopic adenoma removal reduces the incidence of CRC by stage, we developed incidence rates with and without colonoscopy by age, sex, and stage. CRC incidence rates by stage from 1975-1977 SEER12 were assumed to reflect CRC incidence for individuals who had not had colonoscopy, as it was not recommended for screening in those years. Based on the literature, about 15% of CRC does not emerge from adenomas.2 Incidence rates of cancer not arising from adenoma consisting of 15% of the 1975-1977 SEER incidence rates could be thought of as representing a “theoretical best” incidence outcome of colonoscopy, if colonoscopy could detect and remove all adenomas before cancer developed. However, colonoscopy may miss some CRC cases that are exceptionally fast-growing, or the patient may have inadequate preparation where some adenomas may be missed, so we needed to develop “best practical” incidence rates. SEER CRC incidence from 2007-200912 shows much lower rates of regional and distant cancers than 1975-1977 data and reflects widespread, although incomplete, use of screening. We assumed that the 2007-2009 incidence reflects a blend of “best practical” and 1975-1977 incidence rates caused by the impact of about 50% screening. The 50% screening assumption is close to that reported by HEDIS in 2009.10 Table 3 shows incidence rates from 1975-1977 SEER,12 as well as our “best practical” incidence rates.

USPSTF recommendations call for screening colonoscopies every 10 years starting at age 50 years for the normal risk population. For the working-age population, this means screening at ages 50 and 60 years, which is assumed in our model. According to these guidelines, individuals with adenomas should obtain a follow-up screening in 5 years, and we developed the portion of colonoscopies receiving this follow-up based on findings from the literature.13

All costs were trended to 2013 levels using a 5% annual trend, which reflects recent commercial unit price increases.14

Simulation Methods

Estimates for the impact of screening on incidence of CRC, aggregate cost of colonoscopies and CRC, and life-years, were developed through Monte Carlo simulation. Fifteen successive annual cohorts of men and women turning age 50 years starting in 1998 were processed in the model for up to 15 years to produce a typical US population aged 50 to 64 years in 2013. No individuals who reached age 65 years were included in the model. Individuals were randomly assigned to be screened (or not screened) at ages 50 and 60 years. Separate runs of the simulation tested different screening scenarios, ranging from 0% to 100%. Based on adenoma incidence rates identified in the screening colonoscopy claim data analysis, a portion of the individuals screened at age 50 years were randomly assigned to an adenoma group to receive an additional screening at age 55 years following recommendations.4 Individuals were attributed with CRC (by stage) or no CRC by applying incidence probabilities. The incidence probabilities by stage varied depending on whether the individual had received screening or not.

 
Copyright AJMC 2006-2017 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
x
Welcome the the new and improved AJMC.com, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up
×

Sign In

Not a member? Sign up now!