Currently Viewing:
The American Journal of Managed Care August 2013
Cost of Care for Malignant and Benign Renal Masses
Aviva G. Asnis-Alibozek, PA-C; Michael J. Fine, MD; Paul Russo, MD; Trent McLaughlin, BSc(Pharm), PhD; Eileen M. Farrelly, MPH; Norman LaFrance, MD; and William Lowrance, MD, MPH
Long-Term Statin Use and the Risk of Parkinson's Disease
Bitya Friedman, MD; Amnon Lahad, MD, MPH; Yizchak Dresner, MD, MS; and Shlomo Vinker, MD
Potential Misuse and Inappropriate Prescription Practices Involving Opioid Analgesics
Ying Liu, PhD; Joseph E. Logan, PhD; Leonard J. Paulozzi, MD, MPH; Kun Zhang, MS; and Christopher M. Jones, PharmD
Does Medication Adherence Lead to Lower Healthcare Expenses for Patients With Diabetes?
Shou-Hsia Cheng, PhD; Chi-Chen Chen, PhD; and Chin-Hsiao Tseng, MD, PhD
False Activation of the Cardiac Catheterization Laboratory for Primary PCI
Geoffrey D. Barnes, MD; Alexander Katz, MD; Jeffrey S. Desmond, MD; Steven L. Kronick, MD, MS; Jamie Beach, RN; Stanley J. Chetcuti, MD; Eric R. Bates, MD; and Hitinder S. Gurm, MD
Option Pricing: A Flexible Tool to Disseminate Shared Savings Contracts
Mark W. Friedberg, MD, MPP; Anthony M. Buendia, BA; Katharine E. Lauderdale, BA; and Peter S. Hussey, PhD
Sources of Information Used in Selection of Surgeons
Caroline S. Carlin, PhD; John Kralewski, PhD; and Megan Savage, BS
Currently Reading
A Natural Experiment in Mass Media Modulated Pharmacokinetics After a Change in Tablet Formulation
Natan R. Kahan, PhD, RPh, MHA; Daniel A. Vardy, MD, MSc; Dan-Andrei Waitman, MD, MPH; and Gherta Brill, MD

A Natural Experiment in Mass Media Modulated Pharmacokinetics After a Change in Tablet Formulation

Natan R. Kahan, PhD, RPh, MHA; Daniel A. Vardy, MD, MSc; Dan-Andrei Waitman, MD, MPH; and Gherta Brill, MD
Sporadic, unsubstantiated side effects were reported in the mass media after a formulation change of levothyroxine tablets induced patients to monitor thyroid-stimulating hormone levels and to unnecessarily stop taking medication.
Background: After a new formulation of levothyroxine was distributed in Israel, side effects were reported to the Ministry of Health generating extensive media coverage. The purpose of this study was to determine whether the new formulation was associated with a change in thyroid-stimulating hormone (TSH) levels of treated patients and to evaluate the effect of the extensive media coverage on the incidence of laboratory test performance.

Study Design: Retrospective-cohort and crosssectional analysis.

Methods: All patients from the Leumit Health Services of Israel treated with levothyroxine between October 2009 and February 2012 were included in the study. A retrospective cohort was constructed of patients treated and maintained within the desired target range (0.35-5 mIU/L) from January to July 2010. A longitudinal analysis was conducted to calculate the monthly distribution of TSH levels from laboratory tests during routine care over 26 months. Data were stratified by cohort and noncohort patients.

Results: Data were captured for 18,106 levothyroxine-treated patients; 1140 were included into the retrospective cohort. In both subpopulations a sharp rise in the number of tests performed monthly is observed at the peak of media coverage during  October and November 2011. In the retrospective cohort the proportion of TSH results within target range fell to a low of 67.5% during December 2011, with 25.3% between 5.01 and 20 mIU/L. Results >20 mIU/L then peaked at 3.8% indicating an increase in patients who stopped taking levothyroxine.

Conclusions: These results demonstrate the power of mass media to influence patient behavior and to foment a public health  scare.

Am J Manag Care. 2013;19(8):e301-e308
Stress induced by inaccurate or misunderstood messages from media coverage may have caused patients to stop taking an important drug necessary for their health and well-being.
  • Medical decision makers should not underestimate the power of the mass media to both influence patient behavior and to foment a public health scare.

  • Methods must be developed by providers to convey accurate information to both patients and healthcare providers when questions arise concerning the safety and efficacy of widely used products.

  • Managed care information systems can provide the population-based data necessary to scientifically evaluate changes in patient response to new products.
Primary hypothyroidism is the most common endocrine disease.1 The issue of bioequivalence studies for narrow therapeutic index drugs, such as levothyroxine, has been a subject of debate.2-5 Adverse outcomes have been associated with the approved generic substitution of levothyroxine products, frequently without the prescribing physician’s knowledge.6

About 250,000 Israelis are treated for hypothyroidism with the drug levothyroxine, almost exclusively with the brand product Eltroxin, manufactured by GlaxoSmithKline. During the month of February 2011, a new formulation of Eltroxin was distributed in Israel in which changes had been made in the tablets’ inert ingredients. Previously, an eruption in adverse effects reports was observed in New Zealand after a new formulation of Eltroxin had been introduced in 2007.7 However, this experience was not reported to the Pharmacy Division of the Israel Ministry of Health when the new product was registered in Israel in 2008 since  the manufacturer dismissed the incident as being provoked by the media and less associated with the change in formulation. In September 2009, when GlaxoSmithKline sold the production of Eltroxin to Aspen Pharma, Perrigo Israel acquired the registration rights for the product in Israel. Upon receiving Ministry of Health approval for the new formulation in February 2011, the new product was made available to pharmacies in Israel. Shortly after the new formulation was marketed, cases of side  effects began to be reported to the Ministry of Health which included fatigue, weakness, depression, tremors, diarrhea, and arrhythmias. These reports generated extensive media coverage that reached peak intensity during the month of October 2011. Consequently, growing alarm and confusion emerged among treated patients and their families, resulting in a public outcry  accusing all stakeholders involved of negligence and malfeasance.8,9

In response, the director general of the Ministry of Health commissioned a board of inquiry. Although the commission was composed of both clinicians and regulators, the scope of the investigation was mostly limited to the registration process of the product and to the sporadic reports of side effects and complications.10 Of the approximately 800 reports received, only 105 (13.2%) mentioned thyroid-stimulating hormone (TSH) levels, 85 reported TSH elevation, 6 reported a drop, and 14 reported only a “change.” Laboratory data corroborating the report were received in only 35 of the reports, rendering large, population-based analyses unfeasible. To the best of our knowledge, the results of a longitudinal obrelevant period have not been reported.

We hypothesized that if the bioavailability of the new product was significantly inferior to that of its predecessor, measurable populationwide variance in TSH test results would be observed among levothyroxine-treated patients before and after the introduction of the new formula. Additionally, we postulated that the intense media coverage may have affected patient behavior both by inducing compliant patients to perform additional TSH tests and by motivating negligent patients to request blood tests at health maintenance organization (HMO) clinics. We also suspected that some patients, confused by the abundance of conflicting information, may have stopped taking Eltroxin, fearing that the new product was indeed unsafe. The purpose of this study was to determine whether the change in the formulation and later, the intense media coverage, were associated with a measurable change in TSH levels of treated patients, and to evaluate the effect of the extensive media coverage on the incidence of laboratory test performance.

METHODS

This study was conducted in the Leumit Health Services (LHS), a managed care organization that provides medical care and coverage to approximately 700,000 members throughout Israel. Since 1999, LHS has implemented an electronic patient record (EPR) system. During each patient visit, all physicians complete an EPR detailing the specific clinical services provided including diagnoses, drugs prescribed, and diagnostic tests ordered. Additionally, LHS operates a central laboratory which transmits all test results to a central data warehouse that interfaces with the EPR program. Similarly, all data on prescriptions dispensed in LHS-operated community pharmacies and in private pharmacies contracting with LHS are also transmitted to the data warehouse.

To test our research hypotheses and answer our primary research questions we implemented 3 individual study designs, as follows:

1. Population-based, cross-sectional analysis of TSH levels and frequency of testing in levothyroxine-treated patients.

To evaluate the number of TSH tests performed monthly by all patients in the HMO and the distribution of test results throughout the study period, we implemented a cross-sectional study. All patients treated with levothyroxine between October 1, 2009, and February 29, 2012, were included. Since Leumit patients can purchase a 3-month supply of levothyroxine, prescribing data from October to December 2009 were included to identify all patients treated during January 2010. The number of tests performed, mean TSH results with 95% confidence intervals, and median TSH results were calculated for monthly results recorded over the study period (January 2010 until February 2012).

2. Retrospective cohort study of TSH levels and frequency of testing in levothyroxine-treated patients.

To eliminate incidence/prevalence bias, a retrospective cohort was constructed of patients with a record of at least 1 dispensed prescription for levothyroxine during the 4 months prior to February 1, 2010, and a recorded TSH laboratory test result within the target range (0.35-5 mIU/L) during January 2010. Furthermore, to avoid biases emanating from cases difficult to titrate or nonadherent patients, subjects were excluded from the cohort if additional test results not within target range were recorded between January 1, 2010, and June 30, 2010. A longitudinal analysis was conducted to calculate the monthly distribution of TSH levels as recorded from laboratory tests performed during routine care as previously described for the population-based cross-sectional analysis. Additionally, TSH levels were recoded into 4 subcategories (<0.34, 0.35-5.0, 5.1-20, and >20 mIU/mL). The monthly distributions of test results across the 4 categories in the retrospective cohort population were calculated and statistical significance was tested with the 2-sided χ2 test. P value <.05 was considered statistically significant.

3. An evaluation of prevalence of TSH testing among untested levothyroxine-treated patients after the intense media coverage.

To determine whether intense media coverage motivated previously nonadherent patients (ie, nonadherence to laboratory testing) to perform TSH testing, we identified patients continuously treated with levothyroxine throughout the 12 months prior to the peak in media coverage (October 2011), but had no record of a TSH test recorded in their EPR during this 12-month period. Patients were included if dispensed prescriptions for levothyroxine were recorded continuously from June 2010 to November 2011, but a TSH test was not recorded in the EPR during the 12 months prior to October 2011 when the intense media coverage appeared. We calculated the number and proportion of these patients who performed at least 1 test during October and November 2011.

Drug dispensing and laboratory test data were captured from “LHS’s” data warehouse using IBM Cognos 8 BI Report Studio software. Results of queries were downloaded into Microsoft Excel spreadsheets and data analysis was performed using IBM SPSS Statistics version 20 software. A chart review was performed on a sample of electronic records of patients in the target population to glean relevant information recorded by physicians in free text. Ethics committee approval was obtained from LHS’s institutional review board.

RESULTS

Laboratory data were captured for 18,106 levothyroxine-treated patients during the study period, 1140 of whom met the criteria for inclusion into the retrospective cohort (Table). Over the 26-month period 75,082 and 6328 tests were performed for the patients in the noncohort and cohort populations, respectively. The number of TSH tests performed monthly for each subpopulation is shown in Figures 1 and 2. In both subpopulations a sharp rise in the number of tests performed monthly is observed at the peak of the media coverage during the months of October and November 2011, dropping during the following month. The mean and median TSH results for both subpopulations per month appear in Figure 3 and Figure 4, respectively. A gradual nonstatistically significant increase in mean TSH values is observed in both populations after February 2011 with a steeper rise observed after October, peaking during December, and then decreasing during January 2012. This trend is particularly pronounced in the cohort population where mean TSH was 3.93 mIU/L during October 2011, 5.44 mIU/L in December, then falling to 3.77 mIU/L in January 2012. Median TSH was calculated to be 2.81 mIU/L during October 2011, peaking at 3.57 mIU/L during December, and then falling to 2.91 in January 2012. This trend is further illustrated by the TSH value measured for the third quartile which only surpasses the 5 mIU/L mark (the upper boundary of the desired target range) during the 2 months following the intense media coverage, and then falling to 4.51 mIU/L during January 2012. The monthly distribution of TSH test stratified by range for the retrospective cohort is presented in Figure 5. During February 2011, the month the new product was introduced, 84.8% of the tests were within the desired target range, 13.8% between 5.01 and 20 mIU/L, and 0.5% >20 mIU/L. The proportion of test results within target range fell to a low of 67.5% during December 2011, with 25.3% between 5.01 and 20 mIU/L and the proportion of test results >20 mIU/L peaking at 3.8%. The distribution observed 1 month later during January 2012 was similar to that observed the previous September before the story hit the press.

We identified 1078 patients treated with levothyroxine for at least 12 months prior to October 2011 for whom there is no record of a TSH test result in their EPR during this period. Of these patients, 462 (42.9%) performed at least 1 TSH test during the months of October and November 2011.

DISCUSSION

 
Copyright AJMC 2006-2019 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
x
Welcome the the new and improved AJMC.com, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up