Currently Viewing:
The American Journal of Managed Care April 2016
Single- Versus Multiple-Tablet HIV Regimens: Adherence and Hospitalization Risk
S. Scott Sutton, PharmD; James W. Hardin, PhD; Thomas J. Bramley, RPh, PhD; Anna O. D'Souza, BPharm, PhD; and Charles L. Bennett, MD, PhD, MPP
Medicaid Managed Care Reduces Readmissions for Youths With Type 1 Diabetes
Kathleen Healy-Collier, CSSBB, DHA; Walter J. Jones, PhD; James E. Shmerling, DHA, FACHE; Kenneth R. Robertson, MD, MBA; and Robert J. Ferry, Jr, MD, FAAP
Assessing the Impact of an Integrated Care System on the Healthcare Expenditures of Children With Special Healthcare Needs
Mircea I. Marcu, PhD; Caprice A. Knapp, PhD; David Brown, PhD; Vanessa L. Madden, BSc; and Hua Wang, MS
The Role of Health IT and Delivery System Reform in Facilitating Advanced Care Delivery
Jennifer King, PhD; Vaishali Patel, PhD; Eric Jamoom, PhD; and Catherine DesRoches, DrPH
Lost in Translation: Healthcare Utilization by Low-Income Workers Receiving Employer-Sponsored Health Insurance
Bruce W. Sherman, MD; Wendy D. Lynch, PhD; and Carol Addy, MD, MMSc
Currently Reading
Patient Safety Intervention to Reduce Unnecessary Red Blood Cell Utilization
Scott Hasler, MD; Amanda Kleeman MS; Richard Abrams, MD; Jisu Kim, MD; Manya Gupta, MD; Mary Katherine Krause, MS; and Tricia J. Johnson, PhD
Adding Glucose-Lowering Agents Delays Insulin Initiation and Prolongs Hyperglycemia
Courtney Hugie, PharmD, BCPS; Nancee V. Waterbury, PharmD, BCACP; Bruce Alexander, PharmD; Robert F. Shaw, PharmD, MPH, BCPS, BCNSP; and Jason A. Egge, PharmD, MS, BCPS
Costs for a Health Coaching Intervention for Chronic Care Management
Todd H. Wagner, PhD; Rachel Willard-Grace, MPH; Ellen Chen, MD; Thomas Bodenheimer, MD, MPH; and David H. Thom, MD, PhD, MPH
Four Steps for Improving the Consumer Healthcare Experience Across the Continuum of Care
Keith Roberts, MBA
Patient Perceptions of Clinician Self-Management Support for Chronic Conditions
Peter Cunningham, PhD

Patient Safety Intervention to Reduce Unnecessary Red Blood Cell Utilization

Scott Hasler, MD; Amanda Kleeman MS; Richard Abrams, MD; Jisu Kim, MD; Manya Gupta, MD; Mary Katherine Krause, MS; and Tricia J. Johnson, PhD
This study evaluated the impact of a patient safety intervention and national guideline to reduce unnecessary red blood cell transfusions in a large, urban academic medical center.
The decrease in transfusions among all patients is complemented by the analyses conducted on the subset of patients who received transfusions. The drop in the number of patients receiving a transfusion who had a pre-transfusion hemoglobin concentration greater than 8 g/dL suggests that physicians were more cognizant of the recommended hemoglobin threshold. The decrease in the average pre-transfusion hemoglobin levels across all 3 time periods also supports this conclusion.

This study demonstrated that a restrictive transfusion strategy will translate into significant cost savings. Our estimate of just over $131,000 in savings per year was for units that use less than 10% of our institution’s total RBC products and excluded the significant indirect expense of RBCs, including storage, transportation, and waste. Most importantly, there are likely substantial downstream decreases in hospital-acquired complications, mortality, and length of stay from adopting a restrictive transfusion strategy.

The success of this educational intervention provides insight into how hospitals can facilitate the adoption of evidence-based guidelines. Although educational conferences, seminars, and reminders have shown mixed results in changing physician practice, such interventions can be successful when embraced by leadership, implemented in a suitable safety culture, and when they seek maximum physician engagement.12,18 Our local intervention was aided by a strong commitment to quality improvement and high-value care, as well as buy-in from leadership.

Limitations

There are several limitations in this study. This intervention was studied within 1 department, and the intervention’s applicability to other medical centers or departments must be considered. This study was conducted at a teaching hospital with resident physicians, and it is plausible that its trainees are more likely to adopt guidelines because they are early in their career. Furthermore, although the statistical analysis suggests that the education intervention was responsible for the greater drop in transfusion rates, it is difficult to separate its impact from the global awareness of AABB guidelines in the medical community. Finally, it is important to note that the transfusion rate also decreased among patients with hemoglobin levels below 8 g/dL—an unexpected effect considering the education intervention should have only reduced the transfusion rate among patients with hemoglobin levels above 8 g/dL. This may have been due to physicians following a stricter guideline for some GI bleed patients, where evidence shows an even lower hemoglobin threshold of 7 g/dL to be more appropriate.7,10

CONCLUSIONS
This analysis provides insight into the effectiveness of interventions used to guide physician behavior toward evidence-based practices. The results indicate that there was a significant decrease in transfusion rates, patients receiving transfusions above a hemoglobin level of 8 g/dL, total units of RBCs transfused, and the cost of RBC transfusions across all 3 time periods. Following evidence-based guidelines can be a crucial step in the transformation toward value-based care and reducing waste in the healthcare system. This study validated a fundamental approach to guideline adoption with the goal of improving patient safety, but also demonstrated the potential for cost-savings associated with the achievement of safer care. 

Author Affiliations: Department of Internal Medicine (SH, RA, JK, MG) and Department of Health Systems Management (AK, MKK, TJ), Rush University Medical Center, Chicago, IL.

Source of Funding: None.

Author Disclosures: The authors report no relationship or financial interest with any entity that would pose a conflict of interest with the subject matter of this article.

Authorship Information: Concept and design (TJ, RA, SH, MKK, AK, JK, MG); acquisition of data (TJ, RA, AK); analysis and interpretation of data (TJ, SH, RA, AK, JK); drafting of the manuscript (TJ, SH, RA, AK, MG); critical revision of the manuscript for important intellectual content (TJ, RA, SH, MKK, AK, MG); statistical analysis (TJ, AK); administrative, technical, or logistic support (TJ, SH, RA); and supervision (SH, MKK, JK).

Address correspondence to: Tricia Johnson, PhD, Department of Health Systems Management, Rush University Medical Center, 1700 W Van Buren St, Chicago, IL 60612. E-mail: tricia_j_johnson@rush.edu.
REFERENCES

1. Whitaker BI, Hinkins S. The 2011 national blood collection and utilization survey. HHS website. http://www.hhs.gov/ash/bloodsafety/2011-nbcus.pdf. Published 2011. Accessed April 4, 2016.

2. Marik PE, Corwin HL. Efficacy of red blood cell transfusion in the critically ill: A systematic review of the literature. Crit Care Med. 2008;36(9):2667-2674. doi: 10.1097/CCM.0b013e3181844677.

3. Khorana AA, Francis CW, Blumberg N, Culakova E, Refaai MA, Lyman GH. Blood transfusions, thrombosis, and mortality in hospitalized patients with cancer. Arch Intern Med. 2008;168(21):2377-2381. doi: 10.1001/archinte.168.21.2377.

4. Frank SM, Savage WJ, Rothschild JA, et al. Variability in blood and blood component utilization as assessed by an anesthesia information management system. Anesthesiology. 2012;117(1):99-106. doi: 10.1097/ALN.0b013e318255e550.

5. Carson JL, Grossman BJ, Kleinman S, et al; Clinical Transfusion Medicine Committee of the AABB. Red blood cell transfusion: a clinical practice guideline from the AABB*. Ann Intern Med. 2012;157(1):49-58. doi: 10.7326/0003-4819-157-1-201206190-00429.

6. Shander A, Fink A, Javidroozi M, et al; International Consensus Conference on Transfusion Outcomes Group. Appropriateness of allogeneic red blood cell transfusion: the international consensus conference on transfusion outcomes. Transfus Med Rev. 2011;25(3):232-246.e53. doi: 10.1016/j.tmrv.2011.02.001.

7. Al-Jaghbeer M, Yende S. Blood transfusion for upper gastrointestinal bleeding: is less more again? Crit Care. 2013;17(5):325. doi: 10.1186/cc13020.

8. Carson JL, Terrin ML, Noveck H, et al; FOCUS Investigators. Liberal or restrictive transfusion in high-risk patients after hip surgery. N Engl J Med. 2011;365(26):2453-2462. doi: 10.1056/NEJMoa1012452.

9. McIntyre LA, Fergusson DA, Hutchison JS, et al. Effect of a liberal versus restrictive transfusion strategy on mortality in patients with moderate to severe head injury. Neurocrit Care. 2006;5(1):4-9.

10. Frazer K, Kirley K, Stevermer J. Consider this strategy for upper GI bleeds. J Fam Pract. 2013;62(9):E6-E8.

11. Shander A, Hofmann A, Ozawa S, Theusinger OM, Gombotz H, Spahn DR. Activity-based costs of blood transfusions in surgical patients at four hospitals. Transfusion. 2010;50(4):753-765. doi: 10.1111/j.1537-2995.2009.02518.x.

12. Kenefick H, Lee J, Fleishman V. Improving physician adherence to clinical practice guidelines barriers and strategies for change. New England Healthcare Institute website. http://www.nehi.net/writable/publication_files/file/cpg_report_final.pdf. Published February 2008. Accessed April 4, 2016. 

13. Grol R, Grimshaw J. From best evidence to best practice: effective implementation of change in patients’ care. Lancet. 2003;362(9391):1225-1230.

14. Cabana MD, Rand CS, Powe NR, et al. Why don’t physicians follow clinical practice guidelines? a framework for improvement. JAMA. 1999;282(15):1458-1465.

15. Davis D, O’Brien MA, Freemantle N, Wolf FM, Mazmanian P, Taylor-Vaisey A. Impact of formal continuing medical education: do conferences, workshops, rounds, and other traditional continuing education activities change physician behavior or health care outcomes? JAMA. 1999;282(9):867-874.

16. Giguère A, Légaré F, Grimshaw J, et al. Printed educational materials: effects on professional practice and healthcare outcomes. Cochrane Database Syst Rev. 2012;10:CD004398. doi: 10.1002/14651858.CD004398.pub3.

17. Clinical Classifications Software (CCS) for ICD-9-CM. Agency for Healthcare Research and Quality website. www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp. Published April 2016. Accessed April 4, 2016.

18. King R, Michelman M, Curran V, Bean J, Rowden P, Lindsey J. Patient-centered approach to ensuring appropriateness of care through blood management. South Med J. 2013;106(6):362-368. doi: 10.1097/SMJ.0b013e318296d9fa. 
PDF
 
Copyright AJMC 2006-2019 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
x
Welcome the the new and improved AJMC.com, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up