Currently Viewing:
The American Journal of Managed Care June 2017
Comparative Effectiveness and Costs of Insulin Pump Therapy for Diabetes
Ronald T. Ackermann, MD, MPH; Amisha Wallia, MD, MS; Raymond Kang, MA; Andrew Cooper, MPH; Theodore A. Prospect, FSA, MAAA; Lewis G. Sandy, MD, MBA; and Deneen Vojta, MD
Radical Prostatectomy Innovation and Outcomes at Military and Civilian Institutions
Jeffrey J. Leow, MBBS, MPH; Joel S. Weissman, PhD; Linda Kimsey, PhD; Andrew Hoburg, PhD; Lorens A. Helmchen, PhD; Wei Jiang, MS; Nathanael Hevelone, MPH; Stuart R. Lipsitz, ScD; Louis L. Nguyen, MD, MPH, MBA; and Steven L. Chang, MD, MS
Patients' Views of a Behavioral Intervention Including Financial Incentives
Judy A. Shea, PhD; Aderinola Adejare, BA; Kevin G. Volpp, MD, PhD; Andrea B. Troxel, ScD; Darra Finnerty, MPH; Karen Hoffer, BS; Thomas Isaac, MD, MPH, MBA; Meredith Rosenthal, PhD; Thomas D. Sequist, MD, MPH; and David A. Asch, MD, MBA
How Do Medicare Advantage Beneficiary Payments Vary With Tenure?
Paul D. Jacobs, PhD, and Eamon Molloy, PhD
Patient Ratings of Veterans Affairs and Affiliated Hospitals
Paul A. Heidenreich, MD, MS; Aimee Zapata, MS; Lisa Shieh, MD, PhD; Nancy Oliva, PhD, RN; and Anju Sahay, PhD
Using "Roll-up" Measures in Healthcare Quality Reports: Perspectives of Report Sponsors and National Alliances
Jennifer L. Cerully, PhD; Steven C. Martino, PhD; Lise Rybowski, MBA; Melissa L. Finucane, PhD; Rachel Grob, PhD; Andrew M. Parker, PhD; Mark Schlesinger, PhD; Dale Shaller, MPA; and Grant Martsolf, PhD, MPH, RN
Currently Reading
Does the Offer of Free Prescriptions Increase Generic Prescribing?
Bruce Stuart, PhD; Franklin Hendrick, PhD; J. Samantha Dougherty, PhD; and Jing Xu, PhD
Heterogeneity of Nonadherent Buprenorphine Patients: Subgroup Characteristics and Outcomes
Charles Ruetsch, PhD; Joseph Tkacz, MS; Vijay R. Nadipelli, MS, BPharm; Brenna L. Brady, PhD; Naoko Ronquest, PhD; Hyong Un, MD; and Joseph Volpicelli, MD, PhD
A Comparison of Retrospective Attribution Rules
Lucas Higuera, MA, and Caroline Carlin, PhD

Does the Offer of Free Prescriptions Increase Generic Prescribing?

Bruce Stuart, PhD; Franklin Hendrick, PhD; J. Samantha Dougherty, PhD; and Jing Xu, PhD
The offer of free medications to low-income Medicare beneficiaries with diabetes enrolled in Part D plans has no impact on generic prescribing rates.
Objectives: To test if offering zero generic co-pays for oral antidiabetic drugs (OADs) and statins increases generic dispensing for low-income subsidy (LIS) recipients with diabetes enrolled in Medicare Part D.

Study Design: We analyzed a natural experiment in which LIS recipients were randomized to Part D plans in 2008. Some plans placed selected generic OADs and statins on zero co-pay tiers whereas others did not. Randomization eliminated selection effects which could bias the study findings.

Methods: We analyzed a 5% random sample of Medicare beneficiaries with diabetes from the Chronic Condition Data Warehouse using Part D claims, formulary provisions, and co-pay tiers together with a special file prepared by CMS that identified all randomly assigned LIS recipients in 2008. We calculated proportions using generic drugs in the 2 classes and annual days’ supply among users in plans with and without zero co-pay tiers for the country as a whole and California (where zero co-pay plans were particularly popular).

Results: We found that the demand for generic OADs was not significantly different in plans with and without zero co-pay tiers. By contrast, a large difference was observed in the percent of LIS recipients using generic statins in plans with zero co-pay tiers (61.4% vs 54.6%; P <.01). However, the difference disappeared once we controlled for formulary restrictions on the most popular brand statin at the time (Lipitor).
Conclusions: This cautionary tale suggests that policy makers should give greater consideration to formulary provisions when evaluating the effects of free generics in value-based insurance designs.
Takeaway Points
An increasingly popular strategy in value-based health insurance designs, including some Part D plans, is to have a preferred generic tier with no co-pays for selected medications offered on the presumption this will shift demand away from expensive brand name drugs and produce savings for insurers and customers alike. 
  • We tested whether low versus zero generic co-pays in Part D plans had any significant impact on generic dispensing of antidiabetic drugs and statins and found none. 
  • Plans used both the pull of free drugs and the push of formulary restrictions to achieve higher rates of generic use, and it was the push rather than the pull that proved effective in the case of statins. 
  • This cautionary tale suggests that policy makers should give greater consideration to formulary provisions when evaluating the effects of free generics in value-based insurance designs.
An increasingly popular strategy in value-based insurance design (VBID) is a preferred generic co-pay tier in which certain medications are available free of charge on the presumption this will shift demand away from expensive brand name drugs and produce savings for insurers and customers alike. Behavioral economists find that the demand for free goods tends to be much higher than for the same goods offered at very low prices. According to Anderson: “Free has the effect of bending the demand curve—demand shoots up in a very nonlinear fashion.”1 Shampan’er and Ariely argue that this occurs because moving to free not only reduces cost, but also confers special benefits to consumers.2 But does this phenomenon hold for prescription drugs? The answer to this question has obvious relevance to private payers using VBID precepts to set drug co-payment levels, and it is also important for public payers including Medicare, as evidenced by Medicare Payment Advisory Commission’s recommendation that co-payments for beneficiaries receiving low-income subsidies (LIS) be raised for brands but reduced to zero for generics.3

Recent articles by Hoadley et al4 and Tang et al5 would appear to support the wisdom of that policy based on analyses of Medicare beneficiaries’ use of statins, antidepressants, and antidiabetic drugs in Part D plans with and without zero co-pay tiers. However, neither study could account for formulary exclusions and both used cross-sectional designs that are potentially sensitive to selection bias (ie, if beneficiaries with a preference for generic drugs are drawn to plans offering them at no cost, this unobserved behavior will confound the true impact of zero co-pays on generic utilization). We designed the current study to be free of both sources of bias.

In brief, our approach exploited a natural experiment in which Part D enrollees receiving the LIS were randomized to benchmark plans in their region. Some of these plans offered zero generic co-pays and others did not. Randomization ensures equivalent beneficiary characteristics among all plans within a given region and eliminates selection bias. Any observed differences in generic utilization across plans must thus be due to plan policies, including free generics and differences in formulary restrictions. We focused the analyses on Medicare beneficiaries with diabetes who used oral hypoglycemic agents (ie, OADs) and/or statins in 2008.


Data Source and Study Population

The study used 2008 data from a 5% random sample of the Medicare population from the CMS Chronic Condition Data Warehouse (CCW). The files included basic enrollment information by service type (Parts A, B, C, and D); Part D LIS status, including plan assignment method (beneficiary selection or CMS random assignment); paid claims records for all Medicare-covered services; and a special file provided us by CMS that contained complete formulary information on covered drugs and restrictions (prior authorization [PA], step therapy, and quantity limits) for every Part D plan.

We selected the study population as a subset of a sample of Medicare beneficiaries with diabetes drawn from a previously published study.6 The inclusion criteria for the original study cohorts were: 1) Medicare beneficiaries enrolled throughout 2008 with continuous Part A, B, and D coverage; 2) dual-eligible LIS recipients with incomes less than or equal to the federal poverty level and continuously enrolled in CMS-assigned benchmark prescription drug plans (PDPs); 3) diagnosed with diabetes based on International Classification of Diseases, Ninth Revision, Clinical Modification codes 250.xx, 357.2, 362.01, 362.02, or 366.41 on hospital inpatient and medical claims prior to 2008; and 4) filled at least 1 OAD and/or statin prescription in 2008.

Beneficiaries enrolled in Medicare Advantage prescription drug plans (MAPDs) were excluded because CMS does not randomly assign LIS recipients to MAPDs. LIS enrollees in long-term care nursing facilities were excluded because medications are centrally managed and available with no cost sharing. Finally, beneficiaries residing in American territories and Puerto Rico were excluded as we did not have information regarding generic substitution laws in these areas, which might affect generic utilization rates.

For the current study, we created 2 overlapping cohorts of randomized LIS recipients who used OADs and/or statins in 2008. Each cohort was subdivided into 2 groups based on whether their assigned Part D plan offered any generic OADs or statins free of charge. Plans with zero generic co-pay tiers were identified using the following criteria. First, we limited the analysis to plans with at least 30 drug users in each cohort to assure there were multiple beneficiaries taking the most common generic drugs in each class. Next, we identified plans in which non-LIS enrollees had zero co-pays for all prescriptions filled for at least 1 generic OAD or statin over the year. We then checked to determine whether all LIS recipients enrolled in these same plans also paid zero co-pays for the same generic medications. Plans meeting both criteria were considered zero co-pay plans. Nonzero co-pay tier plans were identified based on evidence that no generic OAD or statin was filled at zero co-pay tiers except for prescriptions filled by dual-eligible LIS recipients during the catastrophic phase of the Part D benefit. Individuals assigned to plans that did not offer free generics paid statutory co-pays of $1.05 for generics and $3.10 for brands.

Exploratory analyses showed that among all PDP regions, 49% of LIS enrollees in plans offering zero co-pays for some generic OADs and 59% of enrollees in plans offering zero co-pays for generic statins were California residents. Given the high popularity of zero co-pay tiers in California PDPs, we decided to estimate models both at the national level and for the state.

The Figure presents a flowchart showing how the study samples were selected, beginning with the entire CCW 5% sample of about 2.6 million beneficiaries and ending with the subsamples of LIS recipients randomized to California PDPs with and without zero co-pay provisions for OADs and statins.

Other Measures

Although random plan assignment would ensure the balance of enrollee characteristics within each Part D region, it would not ensure balance across regions. To address that issue, we identified a large number of personal factors that could plausibly influence rates of generic prescribing, including demographic characteristics, diabetes duration and severity, diabetes management activities, comorbidities, and utilization of Medicare services other than drugs. Individual variables in each of these domains are shown in the left-hand column of Table 1.

Randomization also does not control for plan policies, other than zero co-pay tiers, that might influence utilization of generic OADs and statins. The most obvious candidate here is plan formulary design given that Part D sponsors have been shown to use these drug lists to drive market demand.7 We used the First DataBank drug dictionary to identify all drugs within our 2 classes of interest and then matched that against the CMS formulary file.8 This allowed us to identify all OADs and statins that were included and excluded from each plan formulary by name and brand/generic status. The formulary file also permitted us to identify all products with significant access restrictions requiring either PA or step therapy.

The 2 most common operational measures of formulary restrictions in the literature are the percentage of individuals subject to specific types of restrictions4 and a dummy variable indicating whether at least 1 drug in the class is subject to restriction.5 Neither approach captures the full impact of formulary designs on individual behavior because restrictions on popular drugs can have a much bigger effect than those placed on seldomly used products. Although our study was not focused primarily on the impact of formulary design, we were interested in whether formulary restrictiveness was correlated with plan policies for zero co-pays. We tested this association for all individual OADs and statins and discovered a strong positive correlation coefficient (r = 0.5) between restrictions on Lipitor (primarily formulary exclusions) and the offer of zero co-pays for generic statins. No other restrictions on commonly used drugs had correlation coefficients greater than 0.25. Based on these findings, we added a Lipitor restriction variable to our multivariate model together with count variables indicating the total number of OAD and statin drugs subject to formulary exclusion, PA, or step therapy.

Finally, because some Part D regions include several states, we controlled for state-level differences in generic substitution laws. There were 3 broad types of laws: 1) allows for generic substitution by pharmacists if “brand only” not indicated by physician, allows for brand if requested by patient, and mandates brand only if indicated by physician; 2) mandates generic substitution by pharmacists if “brand only” not indicated by physician, allows for brand if requested by patient, and mandates brand only if indicated by physician; and 3) mandates generic substitution if “brand only” not indicated by physician, and mandates brand if indicated by physician.

Statistical Analysis

We tested the relationship between zero co-pay tiers and generic utilization rates using a standard 2-part model design. The first equation in each set of models estimated the relationship between the availability of zero generic co-pays and the proportion of all drug users filling any generic prescription. The second equation estimated the impact of zero co-pays on annual days’ supply of generics filled by generic users. All models were estimated using ordinary least squares (OLS) regression, with the full set of covariates listed in Table 1. In the national models, we controlled for regional differences with 33 region dummies, with 1 region (32 for California) as the reference.

The study was approved by the University of Maryland Institutional Review Board.


Table 1 profiles the characteristics of our study cohorts of LIS recipients using OADs. At the national level, we identified 43 plans offering zero co-pays for generic OADs with a combined 3682 LIS enrollees meeting study inclusion/exclusion criteria. The most common free OADs in these plans were glipizide, glipizide XL, glyburide, and glyburide-metformin (Table 2). The comparison cohort included 11,007 LIS recipients enrolled in 242 plans that offered no free OADs. The 2 national cohorts exhibited somewhat different demographic characteristics, but had similar rates for diabetes severity, comorbidities, and Medicare utilization. The biggest difference between the 2 plan types was in the number of OADs subject to formulary exclusion or major restriction (12 in zero co-pay plans vs 9 in nonzero co-pay plans).

By contrast, the 2 California cohorts had virtually identical characteristics, as would be expected given random assignment (California is a single PDP region). We identified 3 California PDPs that offered free OADs (n = 1790) and 8 that did not (n = 1511). Unlike plans in other regions, the California PDPs offering free OADs actually placed major formulary restrictions on fewer individual products compared with other plans (9.5 vs 12.4).

Copyright AJMC 2006-2020 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
Welcome the the new and improved, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up