Currently Viewing:
The American Journal of Managed Care January 2020
Using Applied Machine Learning to Predict Healthcare Utilization Based on Socioeconomic Determinants of Care
Soy Chen, MS; Danielle Bergman, BSN, RN; Kelly Miller, DNP, MPH, APRN, FNP-BC; Allison Kavanagh, MS; John Frownfelter, MD, MSIS; and John Showalter, MD
Eliminating Barriers to Virtual Care: Implementing Portable Medical Licensure
Pooja Chandrashekar, AB; and Sachin H. Jain, MD, MBA
Trust in Provider Care Teams and Health Information Technology–Mediated Communication
Minakshi Raj, MPH; Jodyn E. Platt, PhD, MPH; and Adam S. Wilk, PhD
The Health IT Special Issue: Enduring Barriers to Adoption and Innovative Predictive Methods
Ilana Graetz, PhD
What Accounts for the High Cost of Care? It’s the People: A Q&A With Eric Topol, MD
Interview by Allison Inserro
Does Machine Learning Improve Prediction of VA Primary Care Reliance?
Edwin S. Wong, PhD; Linnaea Schuttner, MD, MS; and Ashok Reddy, MD, MSc
Health Information Technology for Ambulatory Care in Health Systems
Yunfeng Shi, PhD; Alejandro Amill-Rosario, MPH; Robert S. Rudin, PhD; Shira H. Fischer, MD, PhD; Paul Shekelle, MD; Dennis Scanlon, PhD; and Cheryl L. Damberg, PhD
The Challenges of Consumerism for Primary Care Physicians
Timothy Hoff, PhD
Currently Reading
Advancing the Learning Health System by Incorporating Social Determinants
Deepak Palakshappa, MD, MSHP; David P. Miller Jr, MD, MS; and Gary E. Rosenthal, MD
Opt-In Consent Policies: Potential Barriers to Hospital Health Information Exchange
Nate C. Apathy, BS; and A. Jay Holmgren, MHI
e-Consult Implementation Success: Lessons From 5 County-Based Delivery Systems
Margae Knox, MPH; Elizabeth J. Murphy, MD, DPhil; Timi Leslie, BS; Rachel Wick, MPH; and Delphine S. Tuot, MDCM, MAS

Advancing the Learning Health System by Incorporating Social Determinants

Deepak Palakshappa, MD, MSHP; David P. Miller Jr, MD, MS; and Gary E. Rosenthal, MD
Without integrating data on the social determinants of health, the learning health system could fail to reach its mission of higher-quality, safer, and more efficient care.
Delivery of personalized care. In 2015, the National Institutes of Health launched the Precision Medicine Initiative (PMI) to understand the drivers of health and develop personalized treatments. A central element of the PMI is the All of Us Research Program, which plans to enroll 1 million adults to investigate how differences in genomics, environment, and lifestyle can contribute to the development of precision medicine treatments.22 Although not in the original LHS framework, the NAM published a 2015 workshop summary describing the inclusion of genomic data in the LHS.23 The LHS offers an opportunity to understand how integration of genomic data affects healthcare delivery.24 As an example, Geisinger Health is integrating individual genomic data within the EHR to inform patient care about disease risk.25 However, social risk factors often have a greater influence on disease occurrence than genetic risk factors. For the genomics-enabled LHS to provide precision medicine, it must account for these social factors that affect health and healthcare.26 Further, an LHS that combines data on individuals’ genomics and social risk factors can better elucidate causal pathways leading to health disparities and tailor the delivery of care.

Evaluate the effectiveness of care. A further goal of the LHS is to close the gap between evidence generation and clinical care, particularly the lack of generalizability of randomized controlled trials.2,3 One method to accomplish this is through pragmatic trials that evaluate the effectiveness of treatments in real-world settings. The LHS, with its EHR and robust data collection systems, is an ideal setting for pragmatic trials.27 However, without accounting for patients’ social factors, evaluating the effectiveness of treatments in the LHS could be incomplete. For example, one study evaluated the effect of neighborhood poverty on the impact of a primary care practice–based trial for depression. The authors found that the treatment effect weakened after the initial 4 months among participants living in high-poverty neighborhoods but not among participants in other neighborhoods.28 Thus, the failure to account for social risk factors could lead to effective treatments and novel healthcare delivery strategies showing minimal benefit as a result of unmeasured SDH. Similarly, collecting SDH data could shed light on ways in which social factors mediate the effect of treatments on health.29 Intermountain Healthcare is an LHS that is using an area-level deprivation index to evaluate heterogeneity in medication adherence among patients with hypertension.30

Conclusions

The LHS is a powerful framework for improving the cost and quality of healthcare. However, realizing the full potential of the LHS will require moving beyond the traditional boundaries of healthcare and developing innovative approaches to reduce social risk factors. Although the evidence base for the effectiveness of such approaches on improving health is currently limited, early results suggest that addressing patients’ unmet social needs can decrease costs and improve outcomes. We believe it is imperative that the LHS add to this evidence. An LHS that is able to rapidly evaluate and improve care could be an ideal setting in which to pilot interventions reducing social risk factors. This process should begin with the routine collection of SDH data. Making these data a part of the LHS should enhance patient engagement, allow for tailoring of care, and more accurately evaluate the care experience.

Author Affiliations: Department of Internal Medicine (DP, DPM, GER), Department of Pediatrics (DP), and Division of Public Health Sciences (DP, DPM), Wake Forest School of Medicine, Winston-Salem, NC.

Source of Funding: None.

Author Disclosures: The authors report no relationship or financial interest with any entity that would pose a conflict of interest with the subject matter of this article.

Authorship Information: Concept and design (DP, DPM, GER); drafting of the manuscript (DP, DPM, GER); and critical revision of the manuscript for important intellectual content (DP, DPM, GER).

Address Correspondence to: Deepak Palakshappa, MD, MSHP, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157. Email: dpalaksh@wakehealth.edu.
REFERENCES

1. Institute of Medicine; Yong PL, Saunders RS, Olsen L, eds. The Healthcare Imperative: Lowering Costs and Improving Outcomes: Workshop Series Summary. Washington, DC: The National Academies Press; 2010.

2. Institute of Medicine; Smith M, Saunders R, Stuckhardt L, McGinnis JM, eds. Best Care at Lower Cost: The Path to Continuously Learning Health Care in America. Washington, DC: The National Academies Press; 2013.

3. Accelerating progress toward continuous learning: a National Academy of Medicine meeting summary. Agency for Healthcare Research and Quality website. ahrq.gov/sites/default/files/wysiwyg/professionals/systems/learning-health-systems/Learning-Health-Systems-Meeting-Summary.pdf. Published 2017. Accessed September 11, 2019.

4. Friedman C, Rubin J, Brown J, et al. Toward a science of learning systems: a research agenda for the high-functioning learning health system. J Am Med Inform Assoc. 2015;22(1):43-50. doi: 10.1136/amiajnl-2014-002977.

5. Adler NE, Stewart J. Health disparities across the lifespan: meaning, methods, and mechanisms. Ann N Y Acad Sci. 2010;1186:5-23. doi: 10.1111/j.1749-6632.2009.05337.x.

6. Schroeder SA. We can do better—improving the health of the American people. N Engl J Med. 2007;357(12):1221-1228. doi: 10.1056/NEJMsa073350.

7. Alderwick H, Gottlieb LM. Meanings and misunderstandings: a social determinants of health lexicon for health care systems. Milbank Q. 2019;97(2):407-419. doi: 10.1111/1468-0009.

8. Daniel H, Bornstein SS, Kane GC; Health and Public Policy Committee of the American College of Physicians. Addressing social determinants to improve patient care and promote health equity: an American College of Physicians position paper. Ann Intern Med. 2018;168(8):577-578. doi: 10.7326/M17-2441.

9. Council on Community Pediatrics. Poverty and child health in the United States. Pediatrics. 2016;137(4):e20160339. doi: 10.1542/peds.2016-0339.

10. Institute of Medicine. Capturing Social and Behavioral Domains and Measures in Electronic Health Records: Phase 2. Washington, DC: The National Academies Press; 2014.

11. Alderwick HAJ, Gottlieb LM, Fichtenberg CM, Adler NE. Social prescribing in the U.S. and England: emerging interventions to address patients’ social needs. Am J Prev Med. 2018;54(5):715-718. doi: 10.1016/j.amepre.2018.01.039.

12. Sandberg SF, Erikson C, Owen R, et al. Hennepin Health: a safety-net accountable care organization for the expanded Medicaid population. Health Aff (Millwood). 2014;33(11):1975-1984. doi: 10.1377/hlthaff.2014.0648.

13. Berkowitz SA, Hulberg AC, Standish S, Reznor G, Atlas SJ. Addressing unmet basic resource needs as part of chronic cardiometabolic disease management. JAMA Intern Med. 2017;177(2):244-252. doi: 10.1001/jamainternmed.2016.7691.

14. Accountable Health Communities Model. CMS website. innovation.cms.gov/initiatives/ahcm. Updated November 13, 2019. Accessed December 5, 2019.

15. Castrucci B, Auerbach J. Meeting individual social needs falls short of addressing social determinants of health. Health Affairs website. healthaffairs.org/do/10.1377/hblog20190115.234942/full. Published January 16, 2019. Accessed September 12, 2019.

16. Papanicolas I, Woskie LR, Jha AK. Health care spending in the United States and other high-income countries [erratum in JAMA. 2018;319(17):1824. doi: 10.1001/jama.2018.4940]. JAMA. 2018;319(10):1024-1039. doi: 10.1001/jama.2018.1150.

17. Tong ST, Liaw WR, Kashiri PL, et al. Clinician experiences with screening for social needs in primary care. J Am Board Fam Med. 2018;31(3):351-363. doi: 10.3122/jabfm.2018.03.170419.

18. Palakshappa D, Vasan A, Khan S, Seifu L, Feudtner C, Fiks AG. Clinicians’ perceptions of screening for food insecurity in suburban pediatric practice. Pediatrics. 2017;140(1):e20170319. doi: 10.1542/peds.2017-0319.

19. Schoenthaler A, Hassan I, Fiscella K. The time is now: fostering relationship-centered discussions about patients’ social determinants of health. Patient Educ Couns. 2019;102(4):810-814. doi: 10.1016/j.pec.2018.10.025.

20. Gottlieb L, Fichtenberg C, Alderwick H, Adler N. Social determinants of health: what’s a healthcare system to do? J Healthc Manag. 2019;64(4):243-257. doi: 10.1097/JHM-D-18-00160.

21. Myers RE, DiCarlo M, Romney M, et al. Using a health system learning community strategy to address cancer disparities. Learn Health Syst. 2018;2(4):e10067. doi: 10.1002/lrh2.10067.

22. All of Us research program. National Institutes of Health website. allofus.nih.gov. Accessed September 13, 2019.

23. Institute of Medicine. Genomics-Enabled Learning Health Care Systems: Gathering and Using Genomic Information to Improve Patient Care and Research: Workshop Summary. Washington, DC: The National Academies Press; 2015.

24. Chambers DA, Feero WG, Khoury MJ. Convergence of implementation science, precision medicine, and the learning health care system: a new model for biomedical research. JAMA. 2016;315(18):1941-1942. doi: 10.1001/jama.2016.3867.

25. Williams MS, Buchanan AH, Davis FD, et al. Patient-centered precision health in a learning health care system: Geisinger’s genomic medicine experience. Health Aff (Millwood). 2018;37(5):757-764. doi: 10.1377/hlthaff.2017.1557.

26. West KM, Blacksher E, Burke W. Genomics, health disparities, and missed opportunities for the nation’s research agenda. JAMA. 2017;317(18):1831-1832. doi: 10.1001/jama.2017.3096.

27. Rosenthal GE. The role of pragmatic clinical trials in the evolution of learning health systems. Trans Am Clin Climatol Assoc. 2014;125:204-216, discussion 217-218.

28. Gilman SE, Fitzmaurice GM, Bruce ML, et al. Economic inequalities in the effectiveness of a primary care intervention for depression and suicidal ideation. Epidemiology. 2013;24(1):14-22. doi: 10.1097/EDE.0b013e3182762403.

29. Knighton AJ, Stephenson B, Savitz LA. Measuring the effect of social determinants on patient outcomes: a systematic literature review. J Health Care Poor Underserved. 2018;29(1):81-106. doi: 10.1353/hpu.2018.0009.

30. Knighton AJ, Savitz L, Belnap T, Stephenson B, VanDerslice J. Introduction of an area deprivation index measuring patient socioeconomic status in an integrated health system: implications for population health. EGEMS (Wash DC). 2016;4(3):1238. doi: 10.13063/2327-9214.
PDF
 
Copyright AJMC 2006-2020 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
x
Welcome the the new and improved AJMC.com, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up