Currently Viewing:
The American Journal of Managed Care March 2016
Understanding Vaccination Rates and Attitudes Among Patients With Rheumatoid Arthritis
Diana S. Sandler, MD; Eric M. Ruderman, MD; Tiffany Brown, MPH; Ji Young Lee, MS; Amanda Mixon, PA; David T. Liss, PhD; and David W. Baker, MD, MPH
Remembering the Strength of Weak Ties
Brian W. Powers, AB; Ashish K. Jha, MD, MPH; and Sachin H. Jain, MD, MBA
Prevalence, Effectiveness, and Characteristics of Pharmacy-Based Medication Synchronization Programs
Alexis A. Krumme, MS; Danielle L. Isaman, BS; Samuel F. Stolpe, PharmD; J. Samantha Dougherty, PhD; and Niteesh K. Choudhry, MD, PhD
Impact of Cost Sharing on Specialty Drug Utilization and Outcomes: A Review of the Evidence and Future Directions
Jalpa A. Doshi, PhD; Pengxiang Li, PhD; Vrushabh P. Ladage, BS; Amy R. Pettit, PhD; and Erin A. Taylor, PhD, MSPH
Trends in Hospital Ownership of Physician Practices and the Effect on Processes to Improve Quality
Tara F. Bishop, MD, MPH; Stephen M. Shortell, PhD, MPH, MBA; Patricia P. Ramsay, MPH; Kennon R. Copeland, PhD; and Lawrence P. Casalino, MD, PhD
Currently Reading
Organizational Structure for Chronic Heart Failure and Chronic Obstructive Pulmonary Disease
Seppo T. Rinne, MD, PhD; Chuan-Fen Liu, PhD; Edwin S. Wong, PhD; Paul L. Hebert, PhD; Paul Heidenreich, MD; Lori A. Bastian, MD; and David H. Au, MD
The Budget Impact of Cervical Cancer Screening Using HPV Primary Screening
Thomas Wright, MD; Joice Huang, PharmD, MBA; Edward Baker, MD; Susan Garfield, DrPH; Deanna Hertz, MHEcon; and J. Thomas Cox, MD
National Estimates of Price Variation by Site of Care
Aparna Higgins, MA; German Veselovskiy, MPP; and Jill Schinkel, MS
LDL Cholesterol Response and Statin Adherence Among High-Risk Patients Initiating Treatment
Suma Vupputuri, PhD, MPH; Peter J. Joski, MS; Ryan Kilpatrick, PhD; J. Michael Woolley, PhD; Brandi E. Robinson, MPH; Michael E. Farkouh, MD, MSc; Huifeng Yun, PhD; Monika M. Safford, MD; and Paul M

Organizational Structure for Chronic Heart Failure and Chronic Obstructive Pulmonary Disease

Seppo T. Rinne, MD, PhD; Chuan-Fen Liu, PhD; Edwin S. Wong, PhD; Paul L. Hebert, PhD; Paul Heidenreich, MD; Lori A. Bastian, MD; and David H. Au, MD
In a nationwide cross-sectional comparison of organizational structure for chronic disease management, less attention was given to chronic obstructive pulmonary disease than chronic heart failure.
Despite the relative lack of research funding for COPD, there is a body of literature that supports the implementation of organizational structure for COPD management. Systematic reviews of integrated disease management programs for COPD have demonstrated many parallels to CHF programs, with reduced hospital admissions, improved quality of life, and improved exercise capacity.21,22 Similarly, COPD and CHF studies on exercise programs have demonstrated better patient outcomes with participation in pulmonary and cardiac rehabilitation.23,24 Although there are still many deficiencies and controversies in COPD research, improving the organizational structure of disease management can lead to meaningful improvements in patient outcomes.25

In our study, we found significantly less organizational structure available, even among COPD interventions that have been well studied. There was less feedback for guideline-based performance measures and fewer quality measures assessed prior to hospital discharge for COPD than for CHF. Previous studies have demonstrated that awareness of COPD guidelines and adherence to guideline recommendations is low.26-28 Among 69,820 patients hospitalized in 360 different hospitals for acute COPD exacerbations, only 33% received appropriate guideline-based care.28 Similarly, only 46% of ambulatory patients received appropriate chronic COPD management.29 In contrast, previous studies have estimated that as many as 72% of ambulatory patients receive appropriate chronic CHF management.30 Developing and aligning quality and performance measures to widely accepted guidelines has driven the implementation of these practices into care for multiple clinical conditions, and would likely improve the quality of care for COPD.

Patients who receive healthcare at the VA tend to receive higher quality of care compared with patients who receive healthcare elsewhere.31 Much of this difference is seen in areas where the VA has adopted performance measures for disease management. The VA has instituted several performance measures for CHF and has developed the CHF QUERI to identify and apply best practices for CHF care.32 Despite more VA patients being affected by COPD than CHF, no similar programs exist to improve quality for COPD.9 The specific payment metrics that tend to focus on heart disease outcomes in the private sector do not affect the VA healthcare system, allowing for a broader approach to improving health quality.

We have shown that in a large, nationwide healthcare system, there is a relative deficiency of organizational structure available for the management of COPD patients. Nevertheless, new policies have recently been implemented that impact COPD care and have focused attention to the disease. CMS has expanded the Hospital Readmission Reduction Program to include COPD.33 Hospitals that have high risk–adjusted 30-day readmission rates are subject to a penalty with reduced reimbursement for Medicare patients. This penalty is being implemented without evidence demonstrating that readmissions are a function of the quality of COPD care, preventable, or lead to poor health outcomes.34 Despite the lack of a clear path to reduce readmissions, healthcare systems may attempt to develop and adopt organizational structure and practices for COPD management to offset the potential financial penalties.35 Adoption of carefully thought out processes that emphasize a culture of quality may improve outcomes, even with evidence to suggest that the individual processes may not be effective.36,37

Limitations and Strengths

We had a number of potential limitations that may affect the inferences we can draw from this study. We performed surveys that could be affected by response, recall, and social desirability bias, and we were unable to ascertain whether responses to the survey reflected true practice. In addition, the COPD survey was conducted several years after the CHF survey and we cannot account for any secular changes in practice during this period or between the time of the COPD survey and this publication. However, there was no systemwide intervention targeting COPD management in the VA during this period, and it is unlikely that organizational structure for COPD changed significantly. We believe that if a bias does exist, it likely reflects a greater discrepancy for organizational structure if both surveys had been taken in 2008. Although previous studies have found benefits from increased organizational structure, we were not able to assess whether individual practices were effective at improving outcomes. The time from initial surveys to publication may also limit the application of these results as increasing attention on COPD outcomes may have resulted in more organizational structures for COPD care. Lastly, the study setting was limited exclusively to VA facilities; therefore, our findings may not directly generalize to other healthcare systems.

This study also had important strengths. First, we engaged national VA clinical leaders to disseminate our surveys, which may have contributed to our high response rates and minimal missing data. Second, we surveyed all facilities, thereby minimizing any opportunity to introduce bias by the type of facility or the regional variations in care. Third, we addressed questions that were based on the National Quality Forum or other developed standards, enhancing the ability to utilize in real-world settings.

CONCLUSIONS
In our national comparative study on the organizational structure available for treatment of COPD and CHF, we found less organizational structure available for COPD than for CHF management, which highlights the value placed on health systems for developing these structures for COPD. We suspect that these deficiencies exist throughout various health systems, in part because of the paucity of research and quality improvement efforts that currently exist for COPD. Our study highlights how disparities in quality measurement can develop in the absence of a systematic approach to identify health conditions that warrant closer monitoring. With continuous emphasis placed on value of care, accountable care organizations and other integrated healthcare settings will need to develop processes to address conditions that lead to poor patient outcomes and significant financial risk.

Author Affiliations: VA Connecticut Health Care System, Department of Veterans Affairs (STR, LAB), West Haven, CT; Section of Pulmonary and Critical Care, Department of Internal Medicine, Yale University (STR), New Haven, CT; Health Services Research and Development, VA Puget Sound Health Care System, Department of Veterans Affairs (C-FL, ESW, PLH, DHA), Seattle, WA; Department of Health Services (C-FL, ESW, PLH) and Divisions of Pulmonary and Critical Care, Department of Medicine (DHA), University of Washington, Seattle, WA; Health Research and Policy, VA Palo Alto Health Care System, Department of Veterans Affairs (PH), Palo Alto, CA; Department of Medicine, University of Connecticut Health Center (LAB), Farmington, CT.

Source of Funding: Funding for this research was provided by a Veterans Affairs clinical research grant IIR-09-354. The views expressed here are those of the authors and do not necessarily reflect the position or policy of the Department of Veterans Affairs.

Author Disclosures: The authors report no relationship or financial interest with any entity that would pose a conflict of interest with the subject matter of this article.

Authorship Information: Concept and design (STR, C-FL, LAB, ESW, DHA); acquisition of data (STR, C-FL, DHA, PH); analysis and interpretation of data (STR, C-FL, ESW, PLH); drafting of the manuscript (STR, C-FL, LAB, DHA, PLH, PH); critical revision of the manuscript for important intellectual content (STR, C-FL, LAB, DHA, PLH, PH); statistical analysis (STR, C-FL, ESW, PLH); provision of patients or study materials (STR); obtaining funding (C-FL, DHA, PH); administrative, technical, or logistic support (C-FL, PH, DHA); and supervision (C-FL, PH, DHA).

Address correspondence to: Dr David Au, MD, 1100 Olive Way, Ste 1400, Seattle, WA 98104-3801. E-mail: David.Au@va.gov.
REFERENCES
 
1. Fonarow GC, Abraham WT, Albert NM, et al; OPTIMIZE-HF Investigators and Hospitals. Influence of a performance-improvement initiative on quality of care for patients hospitalized with heart failure: results of the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients With Heart Failure (OPTIMIZE-HF). Arch Intern Med. 2007;167(14):1493-1502.

2. Feltner C, Jones CD, Cené CW, et al. Transitional care interventions to prevent readmissions for persons with heart failure: a systematic review and meta-analysis. Ann Intern Med. 2014;160(11):774-784. doi:10.7326/M14-0083.

3. Scrutinio D, Passantino A, Ricci VA, Catanzaro R. Association between conformity with performance measures and 1-year postdischarge survival in patients with acute decompensated heart
failure. Am J Med Qual. 2013;28(2):160-168. doi:10.1177/1062860612451049.

4. Nakano A, Johnsen SP, Frederiksen BL, et al. Trends in quality of care among patients with incident heart failure in Denmark 2003-2010: a nationwide cohort study. BMC Health Serv Res. 2013;13:391. doi:10.1186/1472-6963-13-391.

5. Halpin D. Mortality in COPD: inevitable or preventable? insights from the cardiovascular arena. COPD. 2008;5(3):187-200. doi:10.1080/15412550802093041.

6. Minino AM, Murphy SL. Death in the United States, 2010. NCHS Data Brief. 2012;(99):1-8.

7. NHLBI fact book, fiscal year 2012. National Heart, Lung, and Blood Institute website. www.nhlbi.nih.gov/about/documents/factbook/2012. Published 2012. Accessed January 2016.  

8. Yu W, Ravelo A, Wagner TH, et al. Prevalence and costs of chronic conditions in the VA health care system. Med Care Res Rev. 2003;60(suppl 3):146S-167S.

9. Neugaard BI, Priest JL, Burch SP, Cantrell CR, Foulis PR. Quality of care for veterans with chronic diseases: performance on quality indicators, medication use and adherence, and health care utilization. Popul Health Manag. 2011;14(2):99-106. doi:10.1089/pop.2010.0020.

10. COPD: who cares? national Chronic Obstructive Pulmonary Disease (COPD) Audit Programme: resources and organisation of care in acute NHS units in England and Wales 2014 [executive summary]. Royal College of Physicians website. https://www.rcplondon.ac.uk/file/1022/download?token=FSObbPeK. Published November 2014. Accessed January 2016.

11. Diagnosis and management of chronic obstructive pulmonary disease (COPD): percentage of COPD patients who are smokers who receive a smoking cessation intervention. Agency for Healthcare Research and Quality website. http://www.qualitymeasures.ahrq.gov/content.aspx?id=44976. Accessed January 18, 2016.

12. Diagnosis and management of chronic obstructive pulmonary disease (COPD): percentage of patients with a diagnosis of COPD who had spirometry testing to establish COPD diagnosis. Agency for Healthcare Research and Quality website. http://www.qualitymeasures.ahrq.gov/content.aspx?id=44973. Accessed January 18, 2016.

13. Diagnosis and management of chronic obstructive pulmonary disease (COPD): percentage of patients with COPD who are prescribed appropriate therapy. Agency for Healthcare Research and Quality website. http://www.qualitymeasures.ahrq.gov/content.aspx?id=44978. Accessed January 18, 2016.

14. Diagnosis and management of chronic obstructive pulmonary disease (COPD): percentage of patients with moderate or severe COPD who have been referred to a pulmonary rehabilitation or exercise program. Agency for Healthcare Research and Quality website. http://www.qualitymeasures.ahrq.gov/content.aspx?id=44982. Accessed January 18, 2016.

15. Ashton CM, Bozkurt B, Colucci WB, et al. Veterans Affairs Quality Enhancement Research Initiative in chronic heart failure. Med Care. 2000;38(6, suppl 1):I26-37.

16. Uddin N, Patterson JH. Current guidelines for treatment of heart failure: 2006 update. Pharmacotherapy. 2007;27(4, pt 2):12S-17S.

17. Roberts CM, Lopez-Campos JL, Pozo-Rodriguez F, Hartl S; European COPD Audit team. European hospital adherence to GOLD recommendations for chronic obstructive pulmonary disease (COPD) exacerbation admissions. Thorax. 2013;68(12):1169-1171. doi:10.1136/thoraxjnl-2013-203465.

18. Gross CP, Anderson GF, Powe NR. The relation between funding by the National Institutes of Health and the burden of disease. N Engl J Med. 1999;340(24):1881-1887.

19. Peters-Golden M, Klinger JR, Carson SS; ATS Research Advocacy Committee. The case for increased funding for research in pulmonary and critical care. Am J Respir Crit Care Med. 2012;186(3):213-215.

20. Institute of Medicine (US) Committee on the NIH Research Priority-Setting Process. Scientific Opportunities and Public Needs: Improving Priority Setting and Public Input at the National Institutes of Health. Washington, DC: National Academies Press; 1998.

21. Kruis AL, Smidt N, Assendelft WJ, et al. Integrated disease management interventions for patients with chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2013;10:CD009437. doi:10.1002/14651858.CD009437.pub2.

22. Martínez-González NA, Berchtold P, Ullman K, Busato A, Egger M. Integrated care programmes for adults with chronic conditions: a meta-review. Int J Qual Health Care. 2014;26(5):561-570. doi:10.1093/intqhc/mzu071.

23. Anderson L, Taylor RS. Cardiac rehabilitation for people with heart disease: an overview of Cochrane systematic reviews. Cochrane Database Syst Rev. 2014;12:CD011273. doi:10.1002/14651858.CD011273.pub2.

24. McCarthy B, Casey D, Devane D, Murphy K, Murphy E, Lacasse Y. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2015;2:CD003793. doi:10.1002/14651858.CD003793.pub3.

25. Glickman SW, Baggett KA, Krubert CG, Peterson ED, Schulman KA. Promoting quality: the health-care organization from a management perspective. Int J Qual Health Care. 2007;19(6):341-348.

26. Salinas GD, Williamson JC, Kalhan R, et al. Barriers to adherence to chronic obstructive pulmonary disease guidelines by primary care physicians. Int J Chron Obstruct Pulmon Dis. 2011;6:171-179. doi:10.2147/COPD.S16396.

27. Wijayaratne K, Wilson J, Sivakumaran P, Sriram KB. Differences in care between general medicine and respiratory specialists in the management of patients hospitalized for acute exacerbations of chronic obstructive pulmonary disease. Ann Thorac Med. 2013;8(4):197-203. doi:10.4103/1817-1737.118499.

28. Lindenauer PK, Pekow P, Gao S, Crawford AS, Gutierrez B, Benjamin EM. Quality of care for patients hospitalized for acute exacerbations of chronic obstructive pulmonary disease. Ann Intern Med. 2006;144(12):894-903.

29. Mularski RA, Asch SM, Shrank WH, et al. The quality of obstructive lung disease care for adults in the United States as measured by adherence to recommended processes. Chest. 2006;130(6):1844-1850.

30. Atwater BD, Dai D, Allen-Lapointe NM, et al. Is heart failure guideline adherence being underestimated? the impact of therapeutic contraindications. Am Heart J. 2012;164(5):750-755.e1. doi:10.1016/j.ahj.2012.08.002.

31. Asch SM, McGlynn EA, Hogan MM, et al. Comparison of quality of care for patients in the Veterans Health Administration and patients in a national sample. Ann Intern Med. 2004;141(12):938-945.

32. Feussner JR, Kizer KW, Demakis JG. The Quality Enhancement Research Initiative (QUERI): from evidence to action. Med Care. 2000;38(6, suppl 1):I1-6.

33. Readmission Reduction Program. CMS website. http://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/Readmissions-Reduction-Program.html. Updated November 16, 2015. Accessed January 15, 2016

34. Feemster LC, Au DH. Penalizing hospitals for chronic obstructive pulmonary disease readmissions. Am J Respir Crit Care Med. 2014;189(6):634-639. doi:10.1164/rccm.201308-1541PP.

35. Chassin MR, Loeb JM, Schmaltz SP, Wachter RM. Accountability measures—using measurement to promote quality improvement. N Engl J Med. 2010;363(7):683-688. doi:10.1056/NEJMsb1002320.

36. Dixon-Woods M, Leslie M, Tarrant C, Bion J. Explaining Matching Michigan: an ethnographic study of a patient safety program. Implement Sci. 2013;8:70. doi:10.1186/1748-5908-8-70.

37. Bion J, Richardson A, Hibbert P, et al; Matching Michigan Collaboration & Writing Committee. ‘Matching Michigan’: a 2-year stepped interventional programme to minimise central venous catheter-blood stream infections in intensive care units in England. BMJ Qual Saf. 2013;22(2):110-123. doi:10.1136/bmjqs-2012-001325. 
PDF
 
Copyright AJMC 2006-2017 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
x
Welcome the the new and improved AJMC.com, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up
×

Sign In

Not a member? Sign up now!