Currently Viewing:
The American Journal of Managed Care December 2017
Chronic Disease Outcomes From Primary Care Population Health Program Implementation
Jeffrey M. Ashburner, PhD, MPH; Daniel M. Horn, MD; Sandra M. O’Keefe, MPH; Adrian H. Zai, MD, PhD; Yuchiao Chang, PhD; Neil W. Wagle, MD, MBA; and Steven J. Atlas, MD, MPH
Expanding the "Safe Harbor" in High-Deductible Health Plans: Better Coverage and Lower Healthcare Costs
A. Mark Fendrick, MD, and Rashna Soonavala
Impact of Consumer-Directed Health Plans on Low-Value Healthcare
Rachel O. Reid, MD, MS; Brendan Rabideau, BA; and Neeraj Sood, PhD
Insurance Switching and Mismatch Between the Costs and Benefits of New Technologies
David Cutler, PhD; Michael Ciarametaro, MBA; Genia Long, MPP; Noam Kirson, PhD; and Robert Dubois, MD, PhD
ED-Based Care Coordination Reduces Costs for Frequent ED Users
Michelle P. Lin, MD, MPH; Bonnie B. Blanchfield, ScD, CPA; Rose M. Kakoza, MD, MPH; Vineeta Vaidya, MS; Christin Price, MD; Joshua S. Goldner, MD; Michelle Higgins, PA-C; Elisabeth Lessenich, MD, MPH; Karl Laskowski, MD, MBA; & Jeremiah D. Schuur, MD, MHS
Evaluation of the Quality Blue Primary Care Program on Health Outcomes
Qian Shi, PhD, MPH; Thomas J. Yan, MS; Peter Lee, BS; Paul Murphree, MD, MHA; Xiaojing Yuan, MPH; Hui Shao, PhD, MHA; William H. Bestermann, MD; Selina Loupe, BS; Dawn Cantrell, BA; David Carmouche, MD; John Strapp, BA; and Lizheng Shi, PhD, MSPharm
Investigating the Impact of Intervention Refusal on Hospital Readmission
Alexis Coulourides Kogan, PhD; Eileen Koons, MSW, ACSW; and Susan Enguidanos, PhD
Currently Reading
Real-World Economic Value of a 21-Gene Assay in Early-Stage Breast Cancer
Stanley E. Waintraub, MD; Donna McNamara, MD; Deena Mary Atieh Graham, MD; Andrew L. Pecora, MD; John Min, BS; Tommy Wu, BA; Hyun Gi Noh, MSC; Jacqueline Connors, RN, OCN; Ruth Pe Benito, MPH, BS; Kelly Choi, MD; Eric Schultz, BS; & Stuart L. Goldberg, MD
Reduction of Emergency Department Use in People With Disabilities
Lihao Chu, PhD; Neeraj Sood, PhD; Michael Tu, MS; Katrina Miller, MD; Lhasa Ray, MD; and Jennifer N. Sayles, MD
Impact of Statin Guidelines on Statin Utilization and Costs in an Employer-Based Primary Care Clinic
Holly E. Gurgle, PharmD, BCACP, CDE; Marisa B. Schauerhamer, PharmD; Simón A. Rodriguez, PharmD; and Carrie McAdam-Marx, MSCI, PhD, RPh

Real-World Economic Value of a 21-Gene Assay in Early-Stage Breast Cancer

Stanley E. Waintraub, MD; Donna McNamara, MD; Deena Mary Atieh Graham, MD; Andrew L. Pecora, MD; John Min, BS; Tommy Wu, BA; Hyun Gi Noh, MSC; Jacqueline Connors, RN, OCN; Ruth Pe Benito, MPH, BS; Kelly Choi, MD; Eric Schultz, BS; & Stuart L. Goldberg, MD
Universal gene expression profiling of patients with stage II breast cancer resulted in outpatient savings of $11,000 (inclusive of testing costs) within 6 months of initiation of medical therapy.
This single-institution retrospective review found that GEP using a 21-gene assay resulted in observed outpatient cost savings during the first 6 months of therapy for women with lymph node–negative, HR-positive, HER2/neu oncogene–negative breast cancer who had stage II cancer or grade 2/3 tumors, inclusive of the cost of the testing (savings of $11,494 and $2394, respectively). By contrast, observed outpatient health expenditures rose for women with stage I or grade 1 disease (by $4505 and $6047, respectively) who underwent GEP testing. Because chemotherapy-treated patients also utilized hospital-based services more frequently, inclusion of hospital costs would have further magnified these findings.

The recurrence risk scores in our series were skewed toward lower risks (52% low, 43% intermediate, and 5% high) and strongly correlated with adjuvant chemotherapy use. This finding was similar to those of a US review in which the proportions of Oncotype Dx-tested women with low, intermediate, and high RS were 51%, 39%, and 10%, which was also associated with adjuvant chemotherapy usage in 11%, 47%, and 88% of patients, respectively.15 The influence of GEP testing on subsequent adjuvant chemotherapy decisions was further supported by the findings of a Canadian study in which 38% of oncologists changed their recommendation from chemotherapy use based on GEP results and only 15% increased chemotherapy use.16 Findings of additional meta-analyses have revealed similar trends in treatment changes.17,18 

Importantly, none of the 236 patients in the Canadian study with grade 1 tumors had a high RS. In our study, none of the women with combined stage I and grade 1 tumors had a high RS determined by Oncotype Dx (0/33), thus negating any clinical benefit of GEP testing and defining a cohort where GEP testing unnecessarily raises costs.16 A survey of oncologists in Ireland found that, in the absence of GEP testing, tumor grade drives decisions, with patients with grade 1 tumors not receiving adjuvant chemotherapy but those with grade 2/3 tumors receiving it. The availability of GEP testing resulted in a reduction of adjuvant chemotherapy usage by 57% in a cohort of 592 patients, resulting in a net savings of almost €800,000 ($2.1 million).19 In a Pennsylvania Cancer Registry review, younger patients (<50 years) accrued cost savings whereas older patients (>65 years) incurred higher healthcare expenditures with GEP testing, potentially indicating clinicians' perceptions of the value of adjuvant chemotherapy according to age.14 

Another GEP assay, the 70-gene signature test (MammaPrint; Agendia Inc, Irvine, California), may also identify women with early-stage HR-positive breast cancer who could have excellent outcomes with hormonal therapy.20 Cost-effectiveness models have found potential cost savings and improved QALY gains with this test, but to our knowledge, real-world data confirmation, such as the current study, is not available.21-23

CONCLUSIONS

GEP testing using the Oncotype Dx 21-gene assay resulted in a reduction of observed outpatient costs during the initial 6 months of treatment for patients with stage II or grade 2/3 tumors among those with lymph node–negative, HR-positive, HER2/neu oncogene–negative breast cancer treated at a single institution, but increased costs for patients with stage I or grade 1 tumors. 

Author Affiliations: John Theurer Cancer Center at Hackensack University Medical Center (SEW, DM, DMAG, ALP, SLG), Hackensack, NJ; Cota Inc (ALP, JM, TW, HGN, JC, RPB, KC, ES, SLG), New York, NY.

Source of Funding: This manuscript was funded by Cota Inc. Cota Inc is responsible for the contents of the analysis but has no financial interests in the assay or the study outcome.

Author Disclosures: Dr Waintraub has received lecture fees from Amgen, Bristol-Myers Squibb (BMS), Celgene, and Pfizer, and owns stock in Genomic Health, Allergan, Curis, Exelixis, BMS, Celgene, and Pfizer. Dr Pecora has received a patent from Cota and is a board member and stock owner of Cota and Caladrius. Mr Schultz is a board member and employee of Cota. Dr Goldberg is an employee and stock owner of Cota, has been a consultant and provided expert testimony for Novartis, has received honoraria from Pfizer, and has received lecture fees from Novartis and BMS. The remaining authors report no relationship or financial interest with any entity that would pose a conflict of interest with the subject matter of this article. 

Authorship Information: Concept and design (SEW, DM, DMAG, ALP, KC, ES, SLG); acquisition of data (JC, RPB, KC, SLG); analysis and interpretation of data (ALP, JM, TW, HGN, KC, SLG); drafting of the manuscript (SEW, DM, DMAG, ALP, JM, TW, HGN, KC, ES, SLG); critical revision of the manuscript for important intellectual content (SEW, DM, DMAG, ALP, TW, HGN, KC, ES, SLG); statistical analysis (JM, TW, HGN, SLG); and provision of patients or study materials (SEW, DM, DMAG, ALP).

Address Correspondence to: Stuart L. Goldberg, MD, John Theurer Cancer Center at Hackensack University Medical Center, 92 Second St, Hackensack, NJ 07601. E-mail: stuart.goldberg@hackensackmeridian.org.
REFERENCES
1. Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):2817-2826. doi: 10.1056/NEJMoa041588.

2. Habel LA, Shak S, Jacobs MK, et al. A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients. Breast Cancer Res. 2006;8(3):R25. doi: 10.1186/bcr1412.

3. Paik S, Tang G, Shak S, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol. 2006;24(23):3726-3734. doi: 10.1200/JCO.2005.04.7985.

4. Toi M, Iwata H, Yamanaka T, et al; Japan Breast Cancer Research Group–Translational Research Group. Clinical significance of the 21-gene signature (Oncotype DX) in hormone receptor-positive early stage primary breast cancer in the Japanese population. Cancer. 2010;116(13):3112-3118. doi: 10.1002/cncr.25206.

5. Shak S, Petkov VI, Miller DP, et al. Breast cancer specific survival in 38,568 patients with node negative hormone receptor positive invasive breast cancer and oncotype DX recurrence score results in the SEER database. Cancer Res. 2016;76(suppl 4):P5-15-01. cancerres.aacrjournals.org/content/76/4_Supplement/P5-15-01. Published February 2016. Accessed April 20, 2016.

6. Sparano JA, Gray RJ, Makower DF, et al. Prospective validation of a 21-gene expression assay in breast cancer. N Engl J Med. 2015;373(21):2005-2014. doi: 10.1056/NEJMoa1510764.

7. Rouzier R, Pronzato P, Chéreau E, Carlson J, Hunt B, Valentine WJ. Multigene assays and molecular markers in breast cancer: systematic review of health economic analyses. Breast Cancer Res Treat. 2013;139(3):621-637. doi: 10.1007/s10549-013-2559-1.

8. Katz G, Romano O, Foa C, et al. Economic impact of gene expression profiling in patients with early-stage breast cancer in France. PLoS One. 2015;10(6):e0128880. doi: 10.1371/journal.pone.0128880.

9. Bargalló-Rocha JE, Lara-Medina F, Pérez-Sánchez V, et al. Cost-effectiveness of the 21-gene breast cancer assay in Mexico. Adv Ther. 2015;32(3):239-253. doi: 10.1007/s12325-015-0190-8. 

10. Yamauchi H, Nakagawa C, Yamashige S, et al. Societal cost-effectiveness analysis of the 21-gene assay in estrogen-receptor–positive, lymph-node–negative early-stage breast cancer in Japan. BMC Health Serv Res. 2014;14:372. doi: 10.1186/1472-6963-14-372.

11. Kip M, Monteban H, Steuten L. Long-term cost-effectiveness of Oncotype DX versus current clinical practice from a Dutch cost perspective. J Comp Eff Res. 2015;4(5):433-445. doi: 10.2217/cer.15.18.

12. Holt S, Bertelli G, Humphreys I, et al. A decision impact, decision conflict and economic assessment of routine Oncotype DX testing of 146 women with node-negative or pNImi, ER-positive breast cancer in the UK. Br J Cancer. 2013;108(11):2250-2258. doi: 10.1038/bjc.2013.207.

13. Hornberger J, Chien R, Krebs K, Hochheiser L. US insurance program’s experience with a multigene assay for early-stage breast cancer. Am J Manag Care. 2011;17(5 spec no):e194-e202.

14. Epstein AJ, Wong YN, Mitra N, et al. Adjuvant chemotherapy use and health care costs after introduction of genomic testing in breast cancer. J Clin Oncol. 2015;33(36):4259-4267. doi: 10.1200/JCO.2015.61.9023.

15. Potosky AL, O’Neil SC, Isaacs C, et al. Population-based study of the effect of gene expression profiling on adjuvant chemotherapy use in breast cancer patients under the age of 65 years. Cancer. 2015;121(22):4062-4070. doi: 10.1002/cncr.29621.

16. Levine MN, Julian JA, Bedard PL, et al. Prospective evaluation of the 21-gene recurrence score assay for breast cancer decision-making in Ontario. J Clin Oncol. 2016;34(10):1065-1071. doi: 10.1200/JCO.2015.62.8503.

17. Augustovski F, Soto N, Caporale J, Gonzalez L, Gibbons L, Ciapponi A. Decision-making impact on adjuvant chemotherapy allocation in early node-negative breast cancer with a 21-gene assay: systematic review and meta-analysis. Breast Cancer Res Treat. 2015;152(3):611-625. doi: 10.1007/s10549-015-3483-3.

18. Carlson JJ, Roth JA. The impact of the Oncotype Dx breast cancer assay in clinical practice: a systematic review and meta-analysis. Breast Cancer Res Treat. 2013;141(1):13-22. doi: 10.1007/s10549-013-2666-z.

19. Smyth L, Watson G, Walsh EM, et al. Economic impact of 21-gene recurrence score testing on early-stage breast cancer in Ireland. Breast Cancer Res Treat. 2015;153(3):573-582. doi: 10.1007/s10549-015-3555-4.

20. Cardoso F, van’t Veer LJ, Bogaerts J, et al; MINDACT Investigators. 70-gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med. 2016;375(8):717-729. doi: 10.1056/NEJMoa1602253.

21. Chen E, Tong KB, Malin JL. Cost-effectiveness of 70-gene MammaPrint signature in node-negative breast cancer. Am J Manag Care. 2010;16(12):e333-e342. 

22. Yang M, Rajan S, Issa AM. Cost effectiveness of gene expression profiling for early stage breast cancer: a decision-analytic model. Cancer. 2012;118(20):5163-5170. doi: 10.1002/cncr.27443.

23. Retèl VP, Joore MA, Knauer M, Linn SC, Hauptmann M, Harten WH. Cost-effectiveness of the 70-gene signature versus St. Gallen guidelines and Adjuvant Online for early breast cancer. Eur J Cancer. 2010;46(8):1382-1391. doi: 10.1016/j.ejca.2010.02.035.
PDF
 
Copyright AJMC 2006-2017 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
x
Welcome the the new and improved AJMC.com, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up
×

Sign In

Not a member? Sign up now!