Currently Viewing:
The American Journal of Managed Care August 2017
Health Insurance and Racial Disparities in Pulmonary Hypertension Outcomes
Kishan S. Parikh, MD; Kathryn A. Stackhouse, MD; Stephen A. Hart, MD; Thomas M. Bashore, MD; and Richard A. Krasuski, MD
Evaluation of a Hospital-in-Home Program Implemented Among Veterans
Shubing Cai, PhD; Patricia A. Laurel, MD; Rajesh Makineni, MS; Mary Lou Marks, RN; Bruce Kinosian, MD; Ciaran S. Phibbs, PhD; and Orna Intrator, PhD
The Effect of Implementing a Care Coordination Program on Team Dynamics and the Patient Experience
Paul Di Capua, MD, MBA, MSHPM; Robin Clarke, MD, MSHS; Chi-Hong Tseng, PhD; Holly Wilhalme, MS; Renee Sednew, MPH; Kathryn M. McDonald, MM, PhD; Samuel A. Skootsky, MD; and Neil Wenger, MD, MPH
What Do Pharmaceuticals Really Cost in the Long Run?
Darius Lakdawalla, PhD; Joanna P. MacEwan, PhD; Robert Dubois, MD, PhD; Kimberly Westrich, MA; Mikel Berdud, PhD; and Adrian Towse, MA, MPhil
The Hospital Tech Laboratory: Quality Innovation in a New Era of Value-Conscious Care
Courtland K. Keteyian, MD, MBA, MPH; Brahmajee K. Nallamothu, MD, MPH; and Andrew M. Ryan, PhD
Currently Reading
Association Between Length of Stay and Readmission for COPD
Seppo T. Rinne, MD, PhD; Meredith C. Graves, PhD; Lori A. Bastian, MD; Peter K. Lindenauer, MD; Edwin S. Wong, PhD; Paul L. Hebert, PhD; and Chuan-Fen Liu, PhD
Cost-Effectiveness Analysis of Vagal Nerve Blocking for Morbid Obesity
Jeffrey C. Yu, AB; Bruce Wolfe, MD; Robert I. Griffiths, ScD, MS; Raul Rosenthal, MD; Daniel Cohen, MA; and Iris Lin, PhD
Impact of Formulary Restrictions on Medication Use and Costs
Xian Shen, PhD; Bruce C. Stuart, PhD; Christopher A. Powers, PharmD; Sarah E. Tom, PhD, MPH; Laurence S. Magder, PhD; and Eleanor M. Perfetto, PhD, MS
Geographic Variation in Medicare and the Military Healthcare System
Taiwo Adesoye, MD, MPH; Linda G. Kimsey, PhD, MSc; Stuart R. Lipsitz, SCD; Louis L. Nguyen, MD, MBA, MPH; Philip Goodney, MD; Samuel Olaiya, PhD; and Joel S. Weissman, PhD

Association Between Length of Stay and Readmission for COPD

Seppo T. Rinne, MD, PhD; Meredith C. Graves, PhD; Lori A. Bastian, MD; Peter K. Lindenauer, MD; Edwin S. Wong, PhD; Paul L. Hebert, PhD; and Chuan-Fen Liu, PhD
Among patients admitted for chronic obstructive pulmonary disease (COPD) at Veterans Affairs hospitals, hospital-level length of stay was not associated with 30-day readmission.
Results from sensitivity analyses coincided with our primary results. Among 10,376 patients older than 75 years, we found increased risk of readmission on a patient level (medium LOS: odds ratio [OR], 1.51; 95% CI, 1.15-2.00; long LOS: OR, 2.34; 95% CI, 1.78-3.10), but no significant increased risk on a hospital level (medium LOS: OR, 0.91; 95% CI, 0.64-1.31; long LOS: OR, 1.03; 95% CI, 0.71-1.52). Among 8290 patients in the highest HCC quartile, we also found increased risk of readmission on a patient level (medium LOS: OR, 1.63; 95% CI, 1.23-2.16; long LOS: OR, 1.84; 95% CI, 1.39-2.44), but no significant increased risk on a hospital level (medium LOS: OR, 1.47; 95% CI, 0.97-2.23; long LOS: OR, 1.26; 95% CI, 0.80-1.98). Repeating the analysis using COPD-specific 30-day readmissions also did not reveal substantial differences in our results (data not shown).

DISCUSSION

This study showed that on a patient level, longer LOS for COPD hospitalizations were significantly associated with a higher risk for readmission, which is likely explained by unmeasured sociodemographic factors and greater severity of illness. Patients who are sicker and have less social support tend to have longer LOS and greater risk for readmission. In our study, patients who had longer LOS tended to be older and unmarried, to live farther from the VA hospital, and to have more comorbidities, prior hospitalizations, prescriptions for COPD medications, and greater use of mechanical ventilation during index hospitalization. Even after controlling for these variables, we still found a significant association between patient LOS and readmission, which most likely reflects residual confounding. After using the median hospital LOS in the model, we found no association between LOS and readmission risk. This was true not only in our general analysis, but also in our sensitivity analysis, which examined the association between LOS and readmission for the frailest patients. Variations in median hospital LOS likely reflect differences in organizational culture and practices that impacted decisions to keep patients in the hospital for longer periods of time. Our findings suggest that a strategy of simply keeping patients in the hospital longer is not likely to be an effective approach for reducing the risk of readmissions.

There is limited research on the association between LOS and hospital readmission. A few studies have examined this relationship using temporal trend analyses.13-15 They found that although LOS decreased for several conditions in the 1990s and early 2000s, there were no corresponding increases in readmission rates. However, during this same period of time, several changes may have independently reduced readmissions. For example, there was a growing financial focus on reducing excess readmissions that resulted in the CMS implementing the HRRP to financially penalize hospitals with high risk-adjusted readmission rates.1 Improvements in quality of outpatient chronic disease management may also affect readmissions, independent of hospital LOS.19

We examined the relationship between LOS and readmission on both the patient level and hospital level, independent of temporal trends. We saw notable variation in hospital LOS, even after adjusting for baseline characteristics of the patient population; however, we did not find an association between hospital LOS and readmission rates. In contrast, a Norwegian study of elderly patients admitted in 1996 found that hospitals with shorter LOS had higher readmission rates.20 There are several reasons that we may have found different results from the Norwegian study. First, it is probable that there is an appropriate therapeutic window for hospital LOS. Reducing hospital LOS below a threshold may lead to adverse postdischarge outcomes, including higher readmissions. Second, the Norwegian study occurred in a different setting and at a different time. There are notable differences in the healthcare delivery systems that make cross-cultural comparisons challenging. Third, all patients in our study were admitted with an index hospitalization for COPD, which may represent a unique disease that offers more opportunity to reduce LOS. Multiple studies have identified home health interventions that effectively reduce LOS for COPD without increasing the risk for readmission.8,9,21 Wider application of these interventions could improve hospital efficiency for COPD.

Limitations

Our study has several limitations. We did not have spirometric confirmation of COPD in our dataset, and although we used a validated approach of identifying veterans with COPD, the cause of index hospitalization may have been misclassified. The dataset did not include patients who had a primary discharge diagnosis of respiratory failure and a secondary diagnosis of COPD, thus limiting detection of severe COPD admissions.22 The dataset also lacked key baseline variables, including smoking status and oxygen use. We also did not have access to laboratory, vital signs, or therapy data during index admission necessary to calculate a comprehensive measure of COPD severity. Hospitals could have systematically admitted less severely ill patients, which would impact both the patient LOS and the risk of subsequent readmission. We controlled for baseline patient characteristics and mechanical ventilation during index hospitalization, and we conducted a sensitivity analysis on the frailest patients, but other variables relating to severity of COPD exacerbation could have impacted the outcome. In addition, hospital-level practices and characteristics could have impacted LOS and readmission. For example, rather than reflecting a tendency to delay discharge until patients have returned closer to baseline, a longer LOS may be a marker of less organized inpatient care management and planning, so that any benefit derived from a longer LOS would be negated by less effective transitional care planning. All patients in our study had an index hospitalization to a VA hospital. VA hospitals represent a unique environment devoid of the same financial incentives and pressures that other healthcare systems have in place to reduce LOS or readmissions. 

CONCLUSIONS

The results of this study add to the evidence on the relationship between LOS and readmission. Although longer patient LOS was associated with increased risk for readmission, median hospital LOS was not associated with readmission. These findings suggest that practices influencing hospital LOS may not impact readmission. Further studies are needed to explore the organizational factors associated with LOS and how these factors can be modified to safely improve hospital efficiency.

Author Affiliations: CHOIR, Edith Nourse Rogers Memorial VA (STR); The Pulmonary Center, Boston University School of Medicine (STR); PRIME Center, VA Connecticut Healthcare System Department of Veterans Affairs (LAB), New Haven, CT; Department of Medicine, Yale University (LAB), New Haven, CT; Health Services Research and Development, VA Puget Sound Healthcare System, Department of Veterans Affairs (MCG, ESW, PLH, C-FL), Seattle, WA; Department of Health Services, University of Washington (MCG, ESW, PLH, C-FL), Seattle, WA; Department of Medicine, Baystate Medical Center (PKL), Springfield, MA. 

Source of Funding: This work was supported by Veterans Affairs clinical research grant IIR 09-354. Dr Wong was supported by a VA Career Development Award. The views expressed here are those of the authors and do not necessarily reflect the position or policy of the Department of Veterans Affairs and their affiliated institutions.

Author Disclosures: Dr Wong has ownership of stock in the SPDR Exchange Traded Fund. All other authors report no relationship or financial interest with any entity that would pose a conflict of interest with the subject matter of this article. 

Authorship Information: Concept and design (STR, ESW, CFL, PLH); acquisition of data (STR, CFL); analysis and interpretation of data (STR, ESW, CFL, PLH); drafting of the manuscript (STR, LAB); critical revision of the manuscript for important intellectual content (STR, PKL, ESW, LAB, CFL, PLH); statistical analysis (STR, ESW, PLH); provision of patients or study materials (STR); obtaining funding (STR, CFL); administrative, technical, or logistic support (STR, CFL); and supervision (LAB, CFL).

Address Correspondence to: Seppo T. Rinne, MD, PhD, 200 Springs Rd, Bedford, MA 01730. E-mail: Seppo.Rinne@va.gov.
REFERENCES

1. CMS, HHS. Medicare program; hospital inpatient prospective payment systems for acute care hospitals and the long-term care hospital prospective payment system and fiscal year 2015 rates; quality reporting requirements for specific providers; reasonable compensation equivalents for physician services in excluded hospitals and certain teaching hospitals; provider administrative appeals and judicial review; enforcement provisions for organ transplant centers; and electronic health record (EHR) incentive program. final rule. Fed Regist. 2014;79(163):49853-50536. 

2. Carey K. Measuring the hospital length of stay/readmission cost trade-off under a bundled payment mechanism. Health Econ. 2015;24(7):790-802. doi: 10.1002/hec.3061.

3. Pfuntner A, Wier LM, Stocks C. Most frequent conditions in US hospitals, 2010 [statistical brief #148]. HCUP website. https://www.hcup-us.ahrq.gov/reports/statbriefs/sb148.pdf. Published January 2013. Accessed June, 2017.

4. Ford ES, Murphy LB, Khavjou O, Giles WH, Holt JB, Croft JB. Total and state-specific medical and absenteeism costs of COPD among adults aged ≥18 years in the United States for 2010 and projections through 2020. Chest. 2015;147(1):31-45. doi: 10.1378/chest.14-0972.

5. Wier LM, Elixhauser A, Pfuntner A, Au DH. Overview of hospitalizations among patients with COPD, 2008 [statistical brief #106]. HCUP website. https://www.hcup-us.ahrq.gov/reports/statbriefs/sb106.pdf. Published February 2011. Accessed June 2017.

6. Wang Y, Stavem K, Dahl FA, Humerfelt S, Haugen T. Factors associated with a prolonged length of stay after acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Int J Chron Obstruct Pulmon Dis. 2014;9:99-105. doi: 10.2147/COPD.S51467. 

7. Mushlin AI, Black ER, Connolly CA, Buonaccorso KM, Eberly SW. The necessary length of hospital stay for chronic pulmonary disease. JAMA. 1991;266(1):80-83.

8. Davies L, Wilkinson M, Bonner S, Calverley PM, Angus RM. “Hospital at home” versus hospital care in patients with exacerbations of chronic obstructive pulmonary disease: prospective randomised controlled trial. BMJ. 2000;321(7271):1265-1268.

9. Cotton MM, Bucknall CE, Dagg KD, et al. Early discharge for patients with exacerbations of chronic obstructive pulmonary disease: a randomized controlled trial. Thorax. 2000;55(11):902-906.

10. Jeppesen E, Brurberg KG, Vist GE, et al. Hospital at home for acute exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2012;5:CD003573. doi: 10.1002/14651858.CD003573.

11. Candrilli SD, Dhamane AD, Meyers JL, Kaila S. Factors associated with inpatient readmission among managed care enrollees with COPD. Hosp Pract. 2015;43(4):199-207. doi: 10.1080/21548331.2015.1085797.

12. Shah T, Churpek MM, Coca Perraillon M, Konetzka RT. Understanding why patients with COPD get readmitted: a large national study to delineate the Medicare population for the readmissions penalty expansion. Chest. 2015;147(5):1219-1226. doi: 10.1378/chest.14-2181.

13. Kaboli PJ, Go JT, Hockenberry J, et al. Associations between reduced hospital length of stay and 30-day readmission rate and mortality: 14-year experience in 129 Veterans Affairs hospitals. Ann Int Med. 2012;157(12):837-845. doi: 10.7326/0003-4819-157-12-201212180-00003.

14. Baker DW, Einstadter D, Husak SS, Cebul RD. Trends in postdischarge mortality and readmissions: has length of stay declined too far? Arch Int Med. 2004;164(5):538-544.

15. Rosenthal GE, Kaboli PJ, Barnett MJ. Differences in length of stay in Veterans Health Administration and other United States hospitals: is the gap closing? Med Care. 2003;41(8):882-894.

16. Cooke CR, Joo MJ, Anderson SM, et al. The validity of using ICD-9 codes and pharmacy records to identify patients with chronic obstructive pulmonary disease. BMC Health Serv Res. 2011;16:11:37. doi: 10.1186/1472-6963-11-37.

17. Gagne JJ, Glynn RJ, Avorn J, Levin R, Schneeweiss S. A combined comorbidity score predicted mortality in elderly patients better than existing scores. J Clin Epidemiol. 2011;64(7):749-759. doi: 10.1016/j.jclinepi.2010.10.004.

18. Pope GC, Kautter J, Ellis RP, et al. Risk adjustment of Medicare capitation payments using the CMS-HCC model. Health Care Financ Rev. 2004;25(4):119-141.

19. Edwards ST, Mafi JN, Landon BE. Trends and quality of care in outpatient visits to generalist and specialist physicians delivering primary care in the United States, 1997-2010. J Gen Intern Med. 2014;29(6):947-955. doi: 10.1007/s11606-014-2808-y.

20. Heggestad T. Do hospital length of stay and staffing ratio affect elderly patients’ risk of readmission? a nationwide study of Norwegian hospitals. Health Serv Res. 2002;37(3):647-665.

21. Goossens LM, Utens CM, Smeenk FW, et al. Cost-effectiveness of early assisted discharge for COPD exacerbations in The Netherlands. Value Health. 2013;16(4):517-528. doi: 10.1016/j.jval.2013.01.010.

22. Stein BD, Bautista A, Schumock GT, et al. The validity of International Classification of Diseases, Ninth Revision, Clinical Modification diagnosis codes for identifying patients hospitalized for COPD exacerbations. Chest. 2012;141(1):87-93. doi: 10.1378/chest.11-0024.
PDF
 
Copyright AJMC 2006-2017 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
x
Welcome the the new and improved AJMC.com, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up
×

Sign In

Not a member? Sign up now!