Low-Value Care for Acute Sinusitis Encounters: Who's Choosing Wisely?

Acute sinusitis is a common acute illness and offers an opportunity to eliminate low-value care. The authors describe current practices, comparing primary care, urgent care, and the emergency department.
Published Online: July 15, 2015
Adam L. Sharp, MD, MS; Marc H. Klau, MD, MBA; David Keschner, MD, JD; Eric Macy, MD, MS; Tania Tang, PhD, MPH; Ernest Shen, PhD; Corrine Munoz-Plaza, MPH; Michael Kanter, MD; Matthew A. Silver, MD; and Michael K. Gould, MD, MS
ABSTRACT

Objectives: To assess acute sinusitis (AS) encounters in primary care (PC), urgent care (UC), and emergency department (ED) settings for adherence to recommendations to avoid low-value care.

Study Design: A retrospective, observational study of adult AS encounters (2010-2012) within a large integrated healthcare system.

Methods: We compared ED and UC encounters with PC visits, adjusting for differences in patient characteristics. Primary outcomes: adherence to recommendations to avoid antibiotics and a computed tomography (CT) scan of the face, head, or sinuses. Secondary outcomes: length of symptoms and adherence with AS recommendations.

Results: Of 152,774 AS encounters, 89.2% resulted in antibiotics and 1.1% resulted in a CT scan. Compared with PC encounters, ED encounters were less likely to result in antibiotics (adjusted odds ratio [AOR], 0.57; 95% CI, 0.50-0.65) but more likely to result in a CT scan (AOR, 59.4; 95% CI, 51.3-68.7), while UC encounters were more likely to result in both antibiotics (AOR, 1.12; 95% CI, 1.08-1.17) and CT imaging (AOR, 2.4; 95% CI, 2.1-2.7). Chart review of encounters resulting in antibiotics found that 50% were inappropriately prescribed for symptoms of ≤7 days’ duration (95% CI, 41%-58%), while 35% were appropriately prescribed for symptoms of ≥14 days’ duration (95% CI, 27%-44%). Only 29% (95% CI, 22%-36%) of encounters were consistent with guideline-adherent care.

Conclusions: AS encounters in an integrated health system infrequently result in CT imaging, but antibiotic treatment is common. Differences exist across acute care settings, but improved antibiotic stewardship is needed in all settings.

Am J Manag Care. 2015;21(7):479-485
Take-Away Points

Acute sinusitis (AS) impacts millions annually and presents an opportunity to assess and improve the quality of care individuals receive. Our study is the first to report computed tomography (CT) and antibiotic prescribing practices for acute sinusitis comparing different care settings. Our primary results are summarized below:
  • Less than 1% of patients receive CT imaging contrary to recommendations.
  • Nine in 10 initial AS encounters result in antibiotics.
  • Primary care orders fewer CT scans and antibiotics than urgent care.
  • Primary care orders fewer CT scans but more antibiotics than the emergency department.
  • All settings could significantly improve antibiotic stewardship for AS.
Acute sinusitis (AS) affects over 30 million individuals each year in the United States, leading to $5.8 billion in direct healthcare costs.1,2 There are clear practice guidelines based on decades of evidence to assist providers in the evaluation and treatment of AS.3-6 However, prior studies suggest that the guidelines have not been effectively translated into routine practice,3,7,8 even now that a number of strategies have been shown to improve antibiotic stewardship.9-11 The American Academy of Family Practice, the American Academy of Asthma, Allergy, and Immunology, and the American Academy of Otolaryngology have all included recommendations for AS in their “top 10” and “top 15” lists of low-value practices that should be questioned, as part of the Choosing Wisely campaign of the American Board of Internal Medicine Foundation.12-14 Adherence with the Choosing Wisely recommendations for AS has not been reported, and a better understanding would highlight the success of the campaign, or conversely, identify opportunities for improvement.

A clear understanding of current practices requires awareness of how AS is treated in different acute care settings. There is a need to better understand and coordinate acute care services in order to accomplish the triple aim of improving the patient care experience and improving population health, while reducing the per capita cost of healthcare.15,16 Better documentation of variation in practices across care settings will help to identify best practices and target areas for improvement. Additionally, a better understanding of guideline adherence within different settings will have important ramifications for future policies to efficiently coordinate and improve acute care services.

Our study aims to describe AS practices within an integrated delivery system, measuring adherence with Choosing Wisely recommendations to limit low-value health services. We compare how AS encounters and treatment patterns differ among primary care (PC), urgent care (UC), and emergency department (ED) settings, and report evidence-based improvement targets for each.

METHODS

We performed a retrospective, observational study of all initial AS encounters (International Classification of Diseases, Ninth Revision, Clinical Modification [ICD-9-CM] code 461.x) for adults from 2010 to 2012 within Kaiser Permanente Southern California (KPSC), a large integrated healthcare system that provides healthcare for 3.6 million members of a capitated, prepaid health plan.

Within KPSC, there are 105 PC clinics staffed by approximately 1500 physician providers. PC clinics are not equipped for walk-in appointments, but same-day appointments are accommodated whenever possible. There are 21 UC clinics, and variation in the types of providers who staff these clinics depends on the geographic area—they can be staffed by designated UC providers, primary care providers, emergency providers, or a combination of these, including a total of approximately 150 providers. UC clinics do not require appointments, but some accommodate pre-arranged visits. There are 14 EDs within the health system staffed by approximately 370 physicians. In these EDs, appointments are not required, nor accommodated and patients are seen first come first serve based on triaged illness severity. Because of differences such as location, scheduling, provider training, imaging availability, and patient self-selection, we looked for variation in AS treatment across these 3 care settings. The study was approved by the KPSC Institutional Review Board.

We excluded encounters for patients aged <18 years, encounters resulting in hospital admission, follow-up encounters, or encounters for immunocompromised patients. Follow-up AS encounters were defined as those with a prior visit for AS in the 30 days before the index visit. “Immunocompromise” was defined as the presence of a diagnostic code for any of the following in the 12 months prior to the encounter: chronic liver disease (ICD-9-CM code 571), end-stage renal disease (ICD-9-CM code 585.6), congestive heart failure (ICD-9-CM code 428), immune disorders (ICD-9-CM code 279), malignant neoplasms (ICD-9-CM codes 140-165, 170-176, 179-209 and 235-239), common rheumatologic disorders frequently treated with immunosuppressing medications (ICD-9-CM codes 714, 710, 555.9 and 556).

We identified outcomes by using structured data from electronic health and administrative records collected during routine clinical care and operations. The 2 primary outcomes for analysis were: 1) the filling of an antibiotic prescription at a pharmacy within our integrated system, and 2) receiving a computed tomography (CT) scan of the face, sinuses, or head within 7 days of the initial AS encounter. We reviewed pharmacy records to capture the filling of a prescription for any antibiotic classified by the generic product identifier. Additionally, a specific analysis of the commonly prescribed and recommended antibiotics assessed the number of encounters resulting in prescriptions for amoxicillin, amoxicillin clavulanate, cefuroxime, cephalexin, clindamycin, trimethoprim-sulfamethoxazole, doxycycline, or azithromycin. To capture all CT scan use associated with the evaluation of AS, we included the following Current Procedural Terminology codes: 70450, 70460, 70470, 70486, 70487, and 70488.

Descriptive analysis assessed the proportion of encounters resulting in antibiotics or CT imaging in aggregate by year, practice setting, hospital service area, and provider. Bivariate and multivariate logistic regression was used to perform 3 separate analyses to assess either receipt of antibiotics, CT, or both as the primary outcome. We compared the ED and UC settings with the PC setting. Multivariate analysis accounted for patient-level variables such as age, gender, Elixhauser comorbidity score, health system membership, fever during encounter, poverty, and education.17 Poverty and education were derived from our research data warehouse using zip code linked to census information. The poverty threshold was a household income less than $34,575 annually based on 2012 HHS guidelines.18 The education threshold used for analysis was based on encounters for patients with less than a high school education or those with a high school diploma or higher education.

Chart review was performed on 300 randomly selected AS encounters using stratified random sampling (100 in each care setting) of encounters that resulted in filling of an antibiotic prescription, the performance of a CT scan, or both. A specifically trained member of the research team performed manual chart reviews to ensure the accuracy of the structured data analysis, as well as to specifically determine the length of reported symptoms and to categorize encounters as guideline adherent, nonadherent, or indeterminate based on Choosing Wisely recommendations. We defined adherence as any visit during which a patient had an abnormal physical exam (including facial swelling/erythema, vision changes, or abnormal neurologic findings) or had a clear complicating comorbidity. Immunocompetent patients with uncomplicated physical exams and comorbidities were categorized as adherent if symptoms were documented to be present for at least 14 days,6 nonadherent if symptoms were present for less than or equal to 7 days,19 and indeterminate if symptoms were present for between 8 and 13 days or if the length of symptoms was not documented. Encounters were also classified as indeterminate if the patient was diagnosed with multiple problems and it was unclear if CT imaging or antibiotics were ordered for a different condition.

To ensure data quality, all ambiguous cases were discussed with clinically trained members of the research team until consensus was achieved. Additionally, 15 charts were reviewed by a separate research team member, blinded to initial review to assess inter-rater reliability (93% agreement, κ = 0.86). Chart review results were analyzed using survey sampling methods to obtain weighted estimates of population proportions, along with 95% CIs for both weighted and sample statistics, for the length of symptoms of patients seeking care and guideline adherence, where both the total proportions and the variances were weighted by the sampling fractions.20,21

RESULTS

A total of 296,652 clinical encounters from 2010 to 2012 had an AS diagnosis. After excluding hospital encounters (n = 526), follow-up encounters (n = 64,451), pediatric visits (n = 76,442), and encounters for immunocompromised patients (n = 2459), our sample consisted of 152,774 encounters (Figure). Most AS encounters occurred within PC clinics (77%), followed by UC centers (22%) and the ED (1%). The median age of patients was 46 years (interquartile range, 34-58 years), 67.5% were female, and the mean Elixhauser comorbidity score was 1.5 (SD ± 1.6). There were some differences among patients seen in different settings (Table 1). Specifically, patients seen in PC settings had higher Elixhauser comorbidity scores and were more likely to be members of the health plan, but were less likely to have fever or to live in a high-poverty or low-education neighborhood.

PDF is available on the last page.
Compendia
Adult ADHD Compendium
COPD Compendium
Dermatology Compendium
Diabetes Compendium
Hematology Compendium
Immuno-oncology Compendium
Lipids Compendium
MACRA Compendium
Neutropenia Compendium
Oncology Compendium
Pain Compendium
Reimbursement Compendium
Rheumatoid Arthritis Compendium
Know Your News
HF Compendium
Managed Care PODCAST