Currently Viewing:
The American Journal of Managed Care Special Issue: HCV
Real-World Outcomes of Ledipasvir/Sofosbuvir in Treatment-Naïve Patients With Hepatitis C
Zobair M. Younossi, MD, MPH, FACG, AGAF, FAASLD; Haesuk Park, PhD; Stuart C. Gordon, MD; John R. Ferguson; Aijaz Ahmed, MD; Douglas Dieterich, MD; and Sammy Saab, MD, MPH
Sofosbuvir Initial Therapy Abandonment and Manufacturer Coupons in a Commercially Insured Population
Taruja D. Karmarkar, MHS; Catherine I. Starner, PharmD; Yang Qiu, MS; Kirsten Tiberg, RPh; and Patrick P. Gleason, PharmD
Currently Reading
Improving HCV Cure Rates in HIV-Coinfected Patients - A Real-World Perspective
Seetha Lakshmi, MD; Maria Alcaide, MD; Ana M Palacio, MD, MPH; Mohammed Shaikhomer, MD; Abigail L Alexander, MS; Genevieve Gill-Wiehl, BA; Aman Pandey, BS; Kunal Patel, BS; Dushyantha Jayaweera, MD; a
A Way Out of the Dismal Arithmetic of Hepatitis C Treatment
Jay Bhattacharya, MD, PhD, Center for Primary Care and Outcomes Research, Stanford University School of Medicine; Guest Editor-in-Chief for the HCV special issue of The American Journal of Managed
Value of Expanding HCV Screening and Treatment Policies in the United States
Mark T. Linthicum, MPP; Yuri Sanchez Gonzalez, PhD; Karen Mulligan, PhD; Gigi A. Moreno, PhD; David Dreyfus, DBA; Timothy Juday, PhD; Steven E. Marx, PharmD; Darius N. Lakdawalla, PhD; Brian R. Edli
The Wider Public Health Value of HCV Treatment Accrued by Liver Transplant Recipients
Anupam B. Jena, MD, PhD; Warren Stevens, PhD; Yuri Sanchez Gonzalez, PhD; Steven E. Marx, PharmD; Timothy Juday, PhD; Darius N. Lakdawalla, PhD; and Tomas J. Philipson, PhD
Costs and Spillover Effects of Private Insurers' Coverage of Hepatitis C Treatment
Gigi A. Moreno, PhD; Karen Mulligan, PhD; Caroline Huber, MPH; Mark T. Linthicum, MPP; David Dreyfus, DBA; Timothy Juday, PhD; Steven E. Marx, PharmD; Yuri Sanchez Gonzalez, PhD; Ron Brookmeyer, PhD
Coverage for Hepatitis C Drugs in Medicare Part D
Jeah Kyoungrae Jung, PhD; Roger Feldman, PhD; Chelim Cheong, PhD; Ping Du, MD, PhD; and Douglas Leslie, PhD

Improving HCV Cure Rates in HIV-Coinfected Patients - A Real-World Perspective

Seetha Lakshmi, MD; Maria Alcaide, MD; Ana M Palacio, MD, MPH; Mohammed Shaikhomer, MD; Abigail L Alexander, MS; Genevieve Gill-Wiehl, BA; Aman Pandey, BS; Kunal Patel, BS; Dushyantha Jayaweera, MD; a
The authors examine real-world hepatitis C virus cure rates with direct-acting antivirals among patients coinfected with HIV.
Outcome
Our primary outcome was HCV cure. Cure was defined as an undetectable HCV RNA at 12 weeks after therapy completion (SVR at week 12 [SVR12] post treatment). A relapse was defined as recurrence of HCV RNA in a patient who had an end-of-treatment response (undetectable HCV RNA at the end of treatment). A virologic breakthrough refers to the reappearance of HCV RNA while still on therapy in a patient who had suppressed their viral level earlier in the course of therapy.10 We defined completion of treatment as self-reported completion of DAA therapy for the duration recommended by the provider. The selection and duration of HCV therapy strictly followed the guidelines of the American Association for the Study of Liver Diseases, and these choices were based on HCV genotype, degree of hepatic fibrosis, risk of drug interactions, etc.
 
Exposures
Our main exposure was attendance at follow-up clinic visits. Attendance at follow-up clinic visits was defined as attendance at clinic visits at week 4; once during weeks 6, 7, or 8; and week 12 of HCV treatment, independent of attendance at laboratory visits. The 3 study settings have different monitoring protocols for patients coinfected with HIV/HCV; however, all sites required clinic visits on weeks 4, 6 to 8, and 12. We describe below the monitoring protocols at each site:
 
The VA outpatient clinics. The treatment is initiated and monitored by the hepatology clinic. The treatment protocol requires clinic and laboratory visits every 2 weeks for the first 2 months, and then monthly, thereafter. A key characteristic is that the VA pharmacy dispenses DAAs during follow-up visits only if the medication for the previous period has been completed.
 
UHealth. The HIV provider or the hepatologist initiates treatment. The treatment protocol recommends follow-up clinic and laboratory visits every 4 weeks. During the initial visit, the patient receives prescriptions with refills to complete HCV treatment. The pharmacy assists in obtaining approval for medications, but medications are provided by community pharmacies based on initial prescription orders and are independent of follow-up visits or laboratory results.
 
JHS outpatient clinics. The HIV provider initiates treatment for HCV. The treatment protocol recommends follow-up clinic and laboratory visits every 4 weeks; however, during the initial visit, the patient receives prescriptions with refills to complete HCV treatment. The JHS pharmacy assists in obtaining approval for medications and informs the ordering physician when medications are approved. Medications are provided by community pharmacies based on initial prescription orders and are independent of follow-up visits or lab results.
 
Other Independent Variables
Other exposure variables included the following: sociodemographic characteristics (age, gender, race, location of treatment); clinical assessments (baseline HIV viral load and median CD4 count, ART regimen during HCV treatment, HCV genotype, HCV viral load, presence of cirrhosis, prior history of HCV treatment and agents used for treatment, presence of hepatitis B coinfection, HCV treatment regimen, concurrent use of ribavirin with DAAs for HCV treatment); attendance at treatment laboratory visits (defined as lab tests done on week 4, once during weeks 6 to 8, on week 12 and at the end of treatment); and posttreatment lab visits.
 
Study Procedures
We reviewed all medical charts and provider notes, and we collected exposure, outcome, and covariate data. We also collected adverse events documented in the medical chart on each follow-up visit. We reviewed information on all follow-up visits as documented in the medical chart.
 
Statistical Analysis
We used REDCap version 6.5.2 electronic data capture tools, hosted at University of Miami, to collect and manage study data. We used descriptive statistics to report the baseline characteristics of the population. We conducted univariable analysis with calculation of odds ratio, 95% CI, and χ2 testing (a P value of .05 was considered to indicate statistical significance). In order to identify predictors, we used logistic regression analysis. Our multivariable analysis included the variables that were significant in the univariate analysis, and those that have been described to be associated with cure in the literature (ie, absence of cirrhosis, HCV genotype, aspartate aminotransferase platelet ratio index score, duration of treatment, race, and prior history of treatment). SPSS version 22 statistical software (IBM Corp, Armonk, New York) was used for analysis.
 


 
Copyright AJMC 2006-2018 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
x
Welcome the the new and improved AJMC.com, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up
×

Sign In

Not a member? Sign up now!