AJMC

Optimal Management of Diabetes Among Overweight and Obese Adults | Page 2

Published Online: January 20, 2014
Denison S. Ryan, MPH; Karen J. Coleman, PhD, MS; Jean M. Lawrence, ScD, MPH, MSSA; Teresa N. Harrison, SM; and Kristi Reynolds, PhD, MPH
Descriptive statistics were used to describe demographic characteristics (age, sex, race/ethnicity, and income) by the BMI categories. Means and standard deviations (SDs) were calculated for continuous variables, and percentages were calculated for categorical variables. Demographic characteristics were compared across BMI categories using the Cochran-Armitage trend test for categorical variables and analysis of variance for continuous variables.

Performance rates for each NCQA HEDIS measure were calculated as the percentage of individuals who achieved the measure overall and by BMI category. According to HEDIS specifications, patients without a BP measure or laboratory test result during the study period were counted as not being at goal for that measure.21 The Cochran-Armitage trend test was used to assess trends in performance rates with increasing BMI.

Multivariate logistic regression was used to examine the association between BMI and the individual HEDIS measures after adjusting for age, sex, race/ethnicity, income, number of comorbidities, and number of healthcare encounters during the study period. The presence of a linear trend across BMI categories was tested by including the median of each BMI category as a continuous independent variable in the model. All analyses were performed using SAS software version 9.2 (SAS Institute Inc, Cary, North Carolina).

RESULTS

Description of the Study Sample


The study sample was composed of 164,721 individuals with diabetes and a mean age of 56.9 (11.2) years. Overall, 12% of individuals were in the healthy-weight category, 30% were overweight, and 28%, 17%, and 14% were in obese categories I, II, and III, respectively (Table 2). About half of the individuals were male, approximately one-third were Hispanic, and slightly more than half resided in a census block with a household income of less than $50,000. The mean (SD) BMI was 32.4 kg/m2 (11.2 kg/m2), and BMI was inversely related to mean age. The proportion of males was lower at higher BMI. The proportions of whites and blacks and individuals in the lowest 2 income categories increased with increasing BMI (P for trend <.0001).

Screening and Control Rates

Nearly all (94%) individuals had an A1C test, 58% had a retinal examination, 93% had a lipid screening profile performed, and 95% had a documented screening for or evidence of nephropathy. In unadjusted analyses, there was a statistically significant trend toward an increase in performance rates for all screening measures with increasing BMI. Conversely, levels of control for A1C, LDL-C, and BP all decreased as BMI increased. Only 41% of all individuals achieved the optimal control target of <7% (<53 mmol/mol) for A1C. More than half (58%) achieved the LDL-C goal of less than 2.6 mmol/L, 82% achieved the BP goal of less than 140/90 mm Hg, and 54% achieved the BP goal of less than 130/80 mm Hg. The largest disparity across BMI categories was seen  for BP less than 130/80 mm Hg, where control decreased across all BMI categories from 63% in healthy-weight individuals to 46%  of individuals in obese class III (data not shown).

After adjusting for age, sex, race/ethnicity, income, number of comorbidities, and number of healthcare encounters, overweight and obese individuals were more likely to have all 4 screening measures (A1C testing, retinal examination, nephropathy screening, and  lipid screening) compared with their healthy-weight counterparts (Figure). The odds of having a retinal examination, however, did not consistently increase with increasing BMI (P for trend = .4410). Of note, the adjusted odds ratios (ORs) (95% confidence interval  [CI]) of nephropathy screening in overweight and obese class I, II, and III individuals compared with healthy-weight individuals were 1.17 (1.08-1.27), 1.44 (1.32-1.57), 1.62 (1.48-1.78), and 1.84 (1.66-2.04), respectively (P for trend <.0001). After adjustment, overweight and obese individuals were less likely to have optimal glycemic control (A1C <7% [<53 mmol/mol]) and BP control (<130/80 mm Hg) than their healthy-weight counterparts. In contrast, LDL-C control consistently increased across BMI categories, with class III obese individuals being more likely (OR = 1.23; 95% CI, 1.17-1.29) to achieve goal compared with their healthy-weight counterparts.

DISCUSSION

Among a diverse population of individuals with diabetes, our findings suggest that BMI was not a barrier to care for recommended screenings and examinations. We found that those individuals who were overweight and obese were more likely than their healthy-weight counterparts to have the recommended screening tests and examinations performed but were less likely to have their  glucose and BP controlled. Interestingly, we found the opposite for LDL-C control, which increased with increasing BMI.

Our findings are similar to those of several other studies; however, those studies did not exclusively include individuals with diabetes. Data from the California Men’s Health Study demonstrated that overweight and obese men were significantly more likely to have their glucose, cholesterol, and triglycerides tested regardless of whether they had diabetes.23 In the National Ambulatory  Medical Care Survey, obese participants were more likely to receive glucose and A1C testing, although it is not known what  proportion of these patients had diabetes.24 In a quality-of-care study among Medicare beneficiaries and recipients of Veterans  Health  Administration healthcare services, a higher BMI was associated with  increased odds of receiving A1C testing and lipid screening among patients with diabetes.16 A study among primary care patients examining diabetes and lipid screening rates found that higher BMI predicted higher screening rates for triglycerides, high-density lipoprotein cholesterol, LDL-C, and A1C; however, only 10% of this study population had diabetes.25

None of these aforementioned studies assessed the HEDIS-recommended control measures for diabetes care. To our knowledge, only 1 study to date has examined control rates. Rose and colleagues26 found that among nearly 50,000 individuals over an 18-month period, obese individuals were less likely to have good control of BP, LDL-C, and fasting glucose compared with healthy-weight individuals.

PDF is available on the last page.

Issue: January 2014
More on AJMC.COM