Cost-Effectiveness of a Peer and Practice Staff Support Intervention | Page 3

Published Online: March 20, 2014
Christopher S. Hollenbeak, PhD; Mark G. Weiner, MD; and Barbara J. Turner, MD, MSED
There are several limitations to this study. CHD risk is based on predicted score, and we did not measure actual events. This is a common limitation of any trial to prevent CHD events, since few events can be expected over the short term. We used a CHD risk measure developed by D’Agostino and colleagues that is less commonly employed but offers the advantage of allowing us to assess risk of either a primary or a secondary CHD event.5 Also, as noted in the results from the clinical end points, the difference in CHD risk was not statistically significant. This is less of a concern for the costeffectiveness analysis since we are able to model the uncertainty in both the outcome and costs. In addition, because we did not directly measure utilities, we could not evaluate QALYs—a standard benchmark for cost-effectiveness—in the short term. This has 2 implications. First, it means that the within-trial results cannot be compared with other costutility analyses. And second, the usual thresholds for declaring an intervention cost-effective in terms of cost per QALY are in the range of $50,000 to $100,000. Since we do not report cost per QALY, decision makers must come to their own conclusions as to whether the intervention is cost-effective in the first 6 months, given the ICER. Finally, as noted earlier, the trial lasted only 6 months. But very few CHD events can be expected over such a short time period. We attempted to address these limitations by extrapolating the trial results using a Markov model. This has the advantage of providing QALYs, but is limited in that the results are modeled and not directly observed as they are in the within-trial analysis. The Markov model was also limited by the fact that its risk equations did not differentiate between primary and secondary CHD events for the 50 patients (20 cases and 30 controls) who had been previously diagnosed with coronary artery disease.

The threat of CHD looms large worldwide. A modeling analysis of the benefit of interventions to reduce this threat internationally found that targeting interventions to persons whose 10-year CHD risk is over 35% would avert 63 million disability-adjusted life-years worldwide.15 In our trial, participants had a 6-month risk of CHD of roughly 0.63%, which would likely be under that very strict threshold. We suggest that developed nations must consider supporting behavioral interventions that complement pharmacotherapy to reduce risk factors for CHD.

Take-Away Points

A community and primary care practice behavioral intervention may be cost-effective to reduce hypertension in African Americans with sustained uncontrolled hypertension. From the payer perspective, the intervention appears to be:
  • Not likely to be cost-effective in reducing coronary heart disease in the first 6 months.

  • Likely to be cost-effective in lowering blood pressure in the first 6 months.

  • Cost-effective in terms of incremental cost per quality-adjusted life-year over the lifetime of the patient if the intervention results are sustained.
Author Affiliations: Departments of Surgery and Public Health Sciences, The Pennsylvania State University, College of Medicine, Hershey, PA (CSH); AstraZeneca Pharmaceuticals, 1800 Concord Pike CIC-523, Wilmington, DE (MGW); Department of Research, University of Texas Health Science Center, San Antonio and University Health System, San Antonio, TX (BJT).

Source of Funding: This study was funded by the Robert Wood Johnson Foundation. In addition, Pfizer contributed supplemental funding for the study. Drs Hollenbeak, Weiner, and Turner received salary support from these funds to complete the work.

Author Disclosures: Dr Hollenbeak reports receiving a grant from the Robert Wood Johnson Foundation, which funded this study. The other authors (MGW, BJT) report no relationship or financial interest with any entity that would pose a conflict of interest with the subject matter of this article.

Authorship Information: Concept and design (CSH, MGW); acquisition of data (JHN, MGW); analysis and interpretation of data (CSH); drafting of the manuscript (CSH); critical revision of the manuscript for important intellectual content (CSH, MGW); statistical analysis (CSH); administrative, technical, or logistic support (CSH).

Address correspondence to: Barbara J. Turner, MD, MSEd, REACH Center, University of Texas Health Science Center, 1 Technology Center, 7411 John Smith Drive, Ste 1100, San Antonio, TX 78229. E-mail: turner @uthscsa.edu.
1. Coleman K, Austin BT, Brach C, Wagner EH. Evidence on the Chronic Care Model in the new millennium. Health Aff (Millwood). 2009;28(1): 75-85.

2. Gilmer TP, O’Connor PJ, Rush WA, et al. Impact of office systems and improvement strategies on costs of care for adults with diabetes. Diabetes Care. 2006;29(6):1242-1248.

3. Schouten LM, Niessen LW, van de Pas JW, Grol RP, Hulscher ME. Cost-effectiveness of a quality improvement collaborative focusing on patients with diabetes. Med Care. 2010;48(10):884-891.

4. Chobanian AV, Bakris GL, Black HR, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42(6):1206-1252.

5. D’Agostino RB, Russell MW, Huse DM, et al. Primary and subsequent coronary risk appraisal: new results from the Framingham study. Am Heart J. 2000;139(2, pt 1):272-281.

6. Neumann PJ, Johannesson M. From principle to public policy: using cost-effectiveness analysis. Health Aff (Millwood). 1994;13(3):206-214.

7. Hollenbeak CS, Dillon PW. An introduction to economic evaluation for pediatric surgeons. Semin Pediatr Surg. 2002;11(1):55-59.

8. Briggs AH, Wonderling DE, Mooney CZ. Pulling cost-effectiveness analysis up by its bootstraps: a non-parametric approach to confidence interval estimation. Health Econ. 1997;6(4):327-340.

9. Chaudhary MA, Stearns SC. Estimating confidence intervals for costeffectiveness ratios: an example from a randomized trial. Stat Med. 1996; 15(13):1447-1458.

10. Lothgren M, Zethraeus N. Definition, interpretation and calculation of cost-effectiveness acceptability curves. Health Econ. 2000;9(7): 623-630.

11. Baker TM, Goh J, Johnston A, Falvey H, Brede Y, Brown RE. Costeffectiveness analysis of valsartan versus losartan and the effect of switching. J Med Econ. 2012;15(2):253-260.

12. Anderson KM, Odell PM, Wilson PW, Kannel WB. Cardiovascular disease risk profiles. Am Heart J. 1991;121(1, pt 2):293-298.

13. Sullivan PW, Ghushchyan V. Preference-Based EQ-5D index scores for chronic conditions in the United States. Med Decis Making. 2006; 26(4):410-420.

14. Currie CJ, McEwan P, Peters JR, Patel TC, Dixon S. The routine collation of health outcomes data from hospital treated subjects in the Health Outcomes Data Repository (HODaR): descriptive analysis from the first 20,000 subjects. Value Health. 2005;8(5):581-590.

15. Barton P, Andronis L, Briggs A, McPherson K, Capewell S. Effectiveness and cost-effectiveness of cardiovascular disease prevention in whole populations: modelling study. BMJ. 2011;343:d4044.

16. Barg FK, Weiner MG, Joseph S, Pandit K, Turner BJ. Qualitative analysis of peer coaches’ experiences with counseling African Americans about reducing heart disease risk. J Intern Med. In press.

17. Graves N, Barnett AG, Halton KA, et al. Cost-effectiveness of a telephone-delivered intervention for physical activity and diet. PLoS One. 2009;4(9):e7135.

18. Barton GR, Goodall M, Bower P, Woolf S, Capewell S, Gabbay MB. Increasing heart-health lifestyles in deprived communities: economic evaluation of lay health trainers. J Eval Clin Pract. 2012;18(4):835-840.

19. Chapman RH, Kowal SL, Cherry SB, Ferrufino CP, Roberts CS, Chen L. The modeled lifetime cost-effectiveness of published adherenceimproving interventions for antihypertensive and lipid-lowering medications. Value Health. 2010;13(6):685-694.

20. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics--2011 update: a report from the American Heart Association. Circulation. 2011;123(4):e18-e209.

21. Finkelstein EA, Khavjou O, Will JC. Cost-effectiveness of WISEWOMAN, a program aimed at reducing heart disease risk among lowincome women. J Womens Health (Larchmt). 2006;15(4):379-389.

22. Murray CJ, Lauer JA, Hutubessy RC, et al. Effectiveness and costs of interventions to lower systolic blood pressure and cholesterol: a global and regional analysis on reduction of cardiovascular-disease risk. Lancet. 2003;361(9359):717-725.
Issue: March 2014
More on AJMC.COM