Currently Viewing:
The American Journal of Accountable Care December 2015
The Need to Level the Playing Field Between Accountable Care Organizations and Medicare Advantage
David Introcaso, PhD
The Debate Over Drug Costs: Instead of "How Much" We Spend, Let's Focus on What We Get in Terms of Health
A. Mark Fendrick, MD Co-Editor-in-Chief, The American Journal of Managed Care Professor of Medicine, School of Medicine Professor of Health Management and Policy, School of Public Health Director, Cen
The Pediatric ACO: A New Frontier in Accountable Care
Anthony D. Slonim, MD, DrPH
Revisiting the Role of Academic Medical Centers in Medicare Shared Savings Program ACOs
Benjamin M. Gerber, JD
The Emerging Business Models and Value Proposition of Mobile Health Clinics
Khin-Kyemon Aung AB; Caterina Hill, MSC, MA; Jennifer Bennet, BS; Zirui Song, MD, PhD; and Nancy E. Oriol, MD
Now That ACOs Are Engaged, What About Those Patients?
Mary K. Caffrey
It Is Time to Ask Patients What Outcomes Are Important to Them
Leif I. Solberg, MD; Stephen E. Asche, MA; John C. Butler, MD; David Carrell, PhD; Christine K. Norton, MA; Jeffrey G. Jarvik, MD, MPH; Rebecca Smith-Bindman, MD; Juliana O. Tillema, MPA; Robin R. Whi
Continuous Quality Improvement Program, Based on Lean Concepts, Allows Emptying of Emergency Department Corridors
Enrique Casalino, MD, PhD; Christophe Choquet, MD; Mathias Wargon, MD, PhD; Romain Hellmann, MD; Michel Ranaivoson, MD; Luisa Colosi, MD; Gaƫlle Juillien, MD; and Julien Bernard, MD
Bundled Payments for Diabetes Care and Healthcare Costs Growth: A 2-Year Follow-up Study
Sigrid Mohnen, PhD; Caroline Baan, PhD; and Jeroen Struijs, PhD
Using Guidelines: When Is It Appropriate?
Maude St-Onge, MD, PHD, FRCPC
Currently Reading
The Impact of Direct Oral Anticoagulants in the Managed Care Environment
Charles E. Mahan, PharmD, RPh, PhC; and Robert Lavender, MD, FACP

The Impact of Direct Oral Anticoagulants in the Managed Care Environment

Charles E. Mahan, PharmD, RPh, PhC; and Robert Lavender, MD, FACP
Participants will learn about the prevalence, incidence, and economic impact of venous thromboembolism and atrial fibrillation on patients, as well as the associated treatments and clinical data relating to efficacy, safety, and cost-efficacy.
Impact of Thromboembolic Events: Morbidity, Mortality, and Cost

Thrombosis refers to abnormal, potentially life-threatening blood clots that form in the vein, artery, or heart. When it occurs in a vein, it is known as a deep vein thrombosis (DVT), and can break off and cause a pulmonary embolism (PE). DVT and PE compose venous thromboembolism (VTE). Atrial fibrillation (AF) can cause clots in the atrium (usually the atrial appendage), which can break off and cause a stroke or systemic embolism.1 Together, VTE and AF are among the leading causes of morbidity and mortality in the United States due to their long term complications.2-4 They are also a source of significant cost and economic burden; however, the emergence of accountable care organizations (ACOs) and their shift from a fee-for-service model, toward a population health model, may lead to improvements in care and decreased costs. In this drive to decrease overall healthcare costs and reduce hospitalizations, it is important to focus on more effective management of not only the traditional agents used, such as warfarin, but also the newer anticoagulants that are altering the treatment landscape.5,6

Prevalence and Incidence of Venous Thromboembolism

VTE is a disease process in which blood clots form; it often occurs in response to an acute and short-lasting risk. It includes DVT, in which the clot usually occurs in the leg and sometimes in the upper extremity, as well as PE,2,7,8 which typically happens when a DVT breaks free and moves through the bloodstream to the lungs where it can block the arteries that supply blood to the lungs.2,7 Since there are no formal national US surveillance systems for VTE, the true incidence of VTE is not well-specified, and it is suspected that occurrences are underreported.2,7 However, it is estimated that between 900,000 and 2 million Americans suffer from VTE each year.3 Clinical administrative databases and hospital records estimate the national incidence of VTE to be between 300,000 to 600,000 cases each year, or 1 to 2 per 1000 of the US population.5 The incidence increases strongly with age and varies greatly by race. Those aged between 15 to 44 years have an estimated incidence rate of 1.5 per 1000 compared with 1.9 per 1000 for those aged 45 to 79 years, and 5 to 6 per 1000 for those 80 years or older. The incidence is higher among blacks (reported to be as high as 1.4 per 1000) compared with whites (1.2 per 1000), and lowest among Asians (0.3 per 1000).7

VTE: morbidity and mortality. VTE is associated with high morbidity and mortality: 10% to 30% of patients with VTE die within 1 month of the diagnosis. An estimated 30,000 to 200,000 deaths due to VTE each year are attributed to PE alone,3 and sudden death is the first symptom in 20% to 25% of cases. Since many cases are likely undiscovered or undiagnosed, PE is considered a “silent disease,”7 and as such, community-based epidemiological studies suggest that the annual death rate may be closer to 82,800.9 Unfortunately, however, the majority of these deaths result from a failure in diagnosis or a failure to prophylax at-risk hospitalized patients.10

Serious long-term complications of VTE include increased risks of recurrent thromboembolism and chronic morbidity from conditions such as post thrombotic syndrome (PTS), chronic venous insufficiency, and chronic thromboembolic pulmonary hypertension. For many patients, VTE will not be a 1-time event. A long-term follow-up study of 1719 patients found that the risk of recurrence was greatest 6 to 12 months after the initial event, with the overall cumulative percentage of VTE recurrence at 10% at 180 days and 13% at 1 year. Even with a standard course of anticoagulant therapy, approximately one-third of patients with VTE had a recurrence within 10 years after the initial event.7,11 PTS is the most common complication of DVT, and is a potentially debilitating condition that develops in 20% to 40% of patients, typically manifesting within 2 years of the acute DVT.10,12,13 The economic burden of PTS in the United States has been estimated as high as $200 million annually,14 and annualized median total costs for PTS in DVT patients with or without (±) PE are estimated at $20,569, compared with $15,843 for patients with DVT ± PE, without PTS.15 Worsening of PTS scores have been associated with declining physical health status, decreased productivity, and other quality of life measures, indicating that the morbidity resulting from DVT may be chronic.12,13

Hospital-associated VTE. Although VTE affects both hospitalized and nonhospitalized patients, hospitalization is by far one of the most common risk factors for VTE, and PE remains the most common preventable cause of death in the hospital.2,3 Based on the National Hospital Discharge Survey (2007-2009), the CDC estimated that an average of 547,596 hospitalizations with VTE occurred each year among those 18 years or older in the United States: 348,558 with DVT, 277,549 with PE, and 78,511 with DVT and PE.2 Age-based hospitalization rates for VTE, DVT, and PE increased substantially with age (see Figure 12).2 Five percent of patients with a primary diagnosis of DVT or PE and 14% for secondary diagnosis were readmitted within 1 year.16

The risk of hospital-associated VTE is significant among all populations of hospitalized patients: according to venographic rates, 10% to 26% in medically ill patients; 15% to 40% for patients undergoing neurosurgery, major gynecological or urological surgery, or general surgery; 40% to 60% for patients undergoing hip or knee surgery; 40% to 80% for major trauma patients; and 60% to 80% for patients with spinal cord injury.3 Overall, more than half of the 2 million VTE cases each year result from a prolonged or post surgical hospital stay.3 However, it is important to note that this does not imply that the VTE always occurs in the hospital setting, especially since approximately 74% of patients developing VTE do so in an outpatient setting. From those, 23% had undergone surgery and 37% had been hospitalized within the past 3 months, but 30% of those patients did not have a recent hospitalization, recent surgery, active malignancy, recent infection, or previously documented episode of VTE. In fact, patients who presented with VTE in the outpatient setting tended to be younger (33% aged <55 years, 66% aged <74 years; <.001) and were less likely to have had recent heart failure, cardiac procedure, or infection (<.001).17

VTE: economic impact. Regardless of the setting, the economic impact of VTE is substantial. Recent estimates place the national cost of VTE between $13.3 billion and $69.3 billion, with preventable costs representing $4.5 to $39.3 billion (estimates in 2011 US$). In a recent study estimating the economic costs of VTE in 49,948 hospitalized nonsurgical patients aged over 40 years, the adjusted mean total health cost over 180 days was $17,848 higher, per patient, for those with a VTE diagnosis at admission versus those without VTE ($47,416 vs $29,568; P <.001), and $51,863 higher for those with a postdischarge diagnosis of VTE compared with those without ($74,136 vs $22,273; P <.001).18

This cost is not just incurred in the initial diagnosis and treatment of VTE. It is ongoing in the recurrences and long-term complications of VTE. In a retrospective analysis using the Integrated Health Care Information Services National Managed Care Database, the economic burden of VTE was quantified based on direct medical costs and utilization over a 7-year period. In patients with a primary diagnosis of DVT (n = 5348), the cost of readmission was 21% higher (= .006), at $11,862 per patient, compared with the initial hospitalization cost of $9805. The cost for the initial hospitalization for patients with a primary diagnosis of PE (n = 2984) was $14,146, compared with $14,722 (n = 1119) for the cost of readmission. The length of stay was similar in both instances for PE, but higher for readmission due to DVT.16

The average total annualized healthcare cost was higher for patients with a primary diagnosis of PE. The majority of these costs, for DVT and PE, were attributed to the cost of the hospitalization facility (see Figure 216). The average total annualized healthcare cost was highest for patients presenting with DVT and PE in the secondary diagnosis (n = 64): $27,909.16

Importance of VTE Prevention in Hospitalized Patients

The downstream morbidity, mortality, and financial burden associated with VTE highlight why VTE prevention is so important. Unfortunately, rates of prevention are still low in many hospitals, although several studies have shown improved uptake of prophylaxis and/or decreases in preventable VTE.3,19-22

CMS, along with the Joint Commission (TJC), recommend the use of VTE prophylaxis as a quality measure for appropriate patients admitted to a hospital or an intensive care unit.23 Quality measures for VTE prophylaxis and treatment were initially developed by the National Quality Forum and TJC, and are now enforced by TJC and CMS to improve quality in US hospitals.24 These quality measures are especially relevant because they are tied to the CMS pay-for-performance programs. This means that hospitals have a financial stake in improving the quality of care of patients in the hospital, and the hospitals will bear the increased costs of treating otherwise preventable hospital-acquired conditions, such as hospital-acquired VTE.

As of October 2008, certain preventable hospital-associated DVT and/or PE events, such as VTE events post hip or knee replacement surgery, are no longer reimbursed by CMS.25 In a study that evaluated the effectiveness of this tactic in improving the quality of healthcare while lowering costs, researchers analyzed 4 groups of Medicare and non-Medicare recipients aged between 60 and 69 years. A model of hierarchical linear regression found that the CMS policy change was independently associated with a 35% reduction in the incidence of hospital-associated PE and DVT in the Medicare patient groups, compared with the non-Medicare patient groups (P = .015).26

Copyright AJMC 2006-2019 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
Welcome the the new and improved, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up