Currently Viewing:
The American Journal of Managed Care March 2010
Ratio of Controller to Total Asthma Medications: Determinants of the Measure
Michael S. Broder, MD; Benjamin Gutierrez, PhD; Eunice Chang, PhD; David Meddis, PhD; and Michael Schatz, MD
An Intervention for VA Patients With Congestive Heart Failure
Laurel A. Copeland, PhD; Gregory D. Berg, PhD; Donna M. Johnson, MHS; and Richard L. Bauer, MD
Cost-Effectiveness of Pneumococcal Polysaccharide Vaccine Among Healthcare Workers During an Influenza Pandemic
Kenneth J. Smith, MD, MS; Mahlon Raymund, PhD; Mary Patricia Nowalk, PhD, RD;Mark S. Roberts, MD, MPP; and Richard K. Zimmerman, MD, MPH
Health Plan Use of Immunization Information Systems for Quality Measurement
Alan C. O'Connor, MBA; Christine M. Layton, PhD, MPH; Todd J. Osbeck, MM; Therese M. Hoyle; and Bobby Rasulnia, PhD
Improving Influenza Immunization in Pregnant Women and Healthcare Workers
Melanie E. Mouzoon, MD; Flor M. Munoz, MD; Anthony J. Greisinger, PhD; Brenda J. Brehm, MA; Oscar A. Wehmanen, MS; Frances A. Smith, MD; Julie A. Markee, RN, MPH; and W. Paul Glezen, MD
Mail-Order Versus Local Pharmacies on Adherence: Study Methods Make for Unfair Comparison
Todd A. Brown, MHP and Nathaniel M. Rickles, PhD. Reply by O. Kenrick Duru, MD, MSHS; Julie A. Schmittdiel, PhD; Wendy T. Dyer, MSc; Melissa M. Parker, MS; Connie S. Uratsu, MS; James Chan, PharmD; and Andrew J. Karter, PhD
Adoption and Use of Stand-Alone Electronic Prescribing in a Health Plan-Sponsored Initiative
Joshua M. Pevnick, MD, MSHS; Steven M. Asch, MD, MPH; John L. Adams, PhD; Soeren Mattke, MD, DSc; Mihir H. Patel, PharmD; Susan L. Ettner, PhD; and Douglas S. Bell, MD, PhD
Risk Adjustment for Medicare Beneficiaries With Alzheimer's Disease and Related Dementias
Pei-Jung Lin, PhD; Matthew L. Maciejewski, PhD; John E. Paul, PhD;and Andrea K. Biddle, PhD
Economics of Influenza Vaccine Administration Timing for Children
Bruce Y. Lee, MD, MBA; Julie H. Y. Tai, MD; Rachel R. Bailey, MPH; Kenneth J. Smith, MD, MS; and Andrew J. Nowalk, MD, PhD
Inpatient Rehabilitation Utilization for Acute Stroke Under a Universal Health Insurance System
Hsuei-Chen Lee, PhD; Ku-Chou Chang, MD; Yu-Ching Huang, BS, RN; Chung-Fu Lan, DDS, DrPH; Jin-Jong Chen, MD, PhD; and Shun-Hwa Wei, PhD
Currently Reading
Medical Care Costs Among Patients With Established Cardiovascular Disease
Gregory A. Nichols, PhD; Timothy J. Bell, MHA; Kathryn L. Pedula, MS; and Maureen O'Keeffe-Rosetti, MS

Medical Care Costs Among Patients With Established Cardiovascular Disease

Gregory A. Nichols, PhD; Timothy J. Bell, MHA; Kathryn L. Pedula, MS; and Maureen O'Keeffe-Rosetti, MS

The economic burden of providing care to patients with cardiovascular disease, driven by secondary hospitalizations, may be substantially greater than current American Heart Association estimates.

Objective: To estimate direct medical costs among patients with established cardiovascular disease (CVD).

Study Design: Observational longitudinal cohort study.

Methods: We identified 12,278 patients who were added to the Kaiser Permanente Northwest CVD registry from 2000 to 2005. We observed patients until they died or left the health plan or until June 30, 2008. Total direct medical costs were calculated over an individual’s entire follow-up and were then annualized by dividing by the months of follow-up. We also calculated and compared age- and sex-adjusted incidence rates per 1000 person-years of secondary CVD hospitalization and all-cause mortality and a composite outcome of both.

Results: The total mean (SD) annual direct medical costs for the entire sample were $18,953 ($39,036). With approximately 22 million US residents having prevalent CVD or stroke, this extrapolates to direct costs of more than $400 billion. Inpatient costs accounted for 42.8% of total costs (mean [SD], $8114 [$25,410]). The greatest differences in costs were found when comparing patients who did versus did not experience a secondary CVD hospitalization ($62,755 vs $13,509, P <.001). Other large differences were found in comparisons of patients with versus without diabetes ($27,258 vs $17,210), an estimated glomerular filtration rate of less than 60 mL/min/1.73 m2 ($29,498 vs $16,326), depression ($26,681 vs $17,303), and death ($28,689 vs $17,779) (P <.001 for all).

Conclusions: The economic burden of providing care to patients with CVD may be substantially greater than current American Heart Association estimates. Although several comorbid conditions undoubtedly contribute to these costs, avoidance of secondary CVD hospitalization may be the key to substantially reducing healthcare consumption.

(Am J Manag Care. 2010;16(3):e86-e93)

The total mean direct medical care costs for patients with established cardiovascular disease (CVD) were $18,953 per patient per year. Cost estimates varied widely, however, depending on the presence or absence of other health conditions.

  • Patients who experienced a secondary CVD hospitalization incurred annual costs that were 4.5 times higher compared with those who avoided inpatient stays. 
  • Costs for persons who were not hospitalized for CVD during follow-up were about 30% lower than the mean, suggesting that successful prevention efforts could substantially reduce the economic burden of CVD.
  • Costs were also substantially elevated for those with specific comorbid conditions, including diabetes, chronic kidney disease, and depression.
An estimated 1 in 3 American adults has 1 or more types of cardiovascular disease (CVD), and CVD remains the leading cause of death in the United States.1 Not surprisingly, CVD is the most costly of all diseases, accounting for an estimated $448.5 billion in 2008, of which two-thirds was attributed to direct patient care.2 Given the improving survival of patients following CVD events, the aging population, the obesity epidemic, the rising incidence of diabetes and cardiometabolic syndrome, and the less-than-optimal control of risk factors, the economic burden of CVD can be expected to increase.3

Individually, patients with CVD incur more than twice the medical costs of age- and sex-matched patients without CVD4 largely because of the increased likelihood of subsequent hospitalizations. However, specific estimates of medical costs among patients with established CVD are scant. A recent study5 based on the US subset of the Reduction of Atherothrombosis for Continued Health Registry found that 1-year medical costs ranged from $3949 to $11,482, but the study did not include outpatient or non-CVD hospitalization costs. Two other recent studies6,7 found costs of approximately $18,000 to $27,000 in the year after discharge for acute coronary syndromes, but Medicare patients were not included in either analysis. To our knowledge, no study has fully described the medical care costs for the full range of patients with existing CVD. Therefore, we sought to estimate the annual direct medical costs incurred over follow-up  of up to 7 years following entry into the CVD registry of a health maintenance organization (HMO) with complete capture of medical utilization and cost data. In addition, we sought to identify high-cost subgroups of patients with CVD to describe the demographic and clinical characteristics that are associated with excess medical costs. We also report the incidence of secondary CVD events among these high-cost groups.

METHODS

The study population was Kaiser Permanente Northwest (KPNW), a 480,000-member group-model HMO that uses clinical practice guidelines to assist clinicians with patient management. Members enroll through employer-sponsored or individual insurance plans, and KPNW also participates in Medicaid and Medicare contracts. We used an observational study design that capitalizes on the comprehensive medical utilization data maintained by KPNW, including an electronic medical record (EMR) of all inpatient and outpatient encounters, laboratory results that are analyzed by a single regional laboratory using standardized methods, and dispensation from pharmacies located in all clinics. The institutional review board of the Kaiser Permanente Center for Health Research reviewed  and approved the study.

Sample Selection

Kaiser Permanente Northwest maintains a registry of patients with known CVD, which is generated by automated processes that access EMR data. The criteria for  registry entry include the following: an inpatient diagnosis of myocardial infarction (MI) (International Classification of Diseases, Ninth Revision, Clinical Modification [ICD-9-CM] code 410.xx), coronary occlusion without MI (code 411.81), other acute ischemic heart disease (code 411.89), unstable angina  (code 411.1), angina pectoris (code 413.x), cerebrovascular disease (codes 433.x, 434.x, 437.x, and 438.x), a revascularization procedure (codes 35.96, 36.01, 36.02, 36.05, 36.09, 36.1x, 36.29, V45.81, and V45.82), or an outpatient diagnosis or entry on the patient’s problem list of old MI (code 412.x), chronic ischemic heart disease (code 414.x), atherosclerosis (code 440.x), or aortic aneurysm (code 441.x). We selected all 14,705 patients who were added to  the CVD registry from 2000 to 2005 and defined the registry entry date as the index date. To obtain stable estimates of individuals’ costs, we required that  patients survive and remain eligible for at least 6 months following their index date. This resulted in the exclusion of 2427 patients, for a final analysis  sample of 12,278.

CVD Outcomes and Covariates

We observed patients until they died or left the health plan for other reasons or until June 30, 2008, whichever came first. Deaths were ascertained from KPNW membership records, but cause of death was unavailable. Cardiovascular disease hospitalizations were defined as an overnight stay with a primary discharge diagnosis of CVD (ICD-9-CM codes 410.x-429.x, 430.x, 431.x, 432.x, 434.x, 435.x, 436.x, 437.1, and 402.91) or for a revascularization procedure (codes 35.96, 36.01, 36.02, 36.05, 36.09, 36.1x, 36.29, V45.81, and V45.82). We considered a composite outcome of secondary CVD hospitalization or all-cause mortality and also analyzed these independently. To identify characteristics that contribute to high costs, we used the date of entry into the CVD registry as the index date and categorized individuals using baseline values assessed as of that date. Age at index date and sex were extracted from KPNW membership records. Body mass index was calculated from height and weight data in the EMR. Blood pressure, presence of type 1 or type 2 diabetes mellitus (ICD-9-CM code  250.xx), and history of depression (codes 296.2x, 296.3x, 300.4, 309.1, and 311.x) were also collected from the EMR. We extracted baseline lipid values from  those recorded in the laboratory database in the year preceding registry entry and used serum creatinine values to obtain the estimated glomerular filtration rate (eGFR) using the Modification Diet in Renal Disease formula.8 Pharmaceutical use was defined as 1 or more dispenses of a specific drug

class or product.

Costing Methods

Total and component direct medical costs were calculated for an individual’s entire follow-up, but did not include the primary event that qualified him or her for the CVD registry. We based our costing method on procedures developed and validated by the Kaiser Permanente Center for Health Research.9,10 For outpatient costs, this method creates standard costs for office visits by specialty or department and by type of clinician (medical doctor vs physician assistant or nurse practitioner). The number of visits per department per clinician type is then multiplied by the appropriate unit cost. Pharmaceutical costs are based on retail prices within the service area. Hospitalizations were assigned to diagnosis-related groups (DRGs) based on the primary reason for hospitalization. The mean daily rate per DRG was then multiplied by the length of stay. Costs for medical services incurred at facilities not owned by KPNW were derived from an automated claims system and were based on the amount paid by KPNW to nonplan providers. Therefore, although the costs reported herein may be specific to KPNW, they approximate the charges a nonmember would be billed if these services were purchased from KPNW. All costs were adjusted to 2008  US dollars using the medical care component of the Consumer Price Index and were then annualized on an individual basis by summing them over each individual’s entire follow-up, dividing by individual months of observation, and multiplying by 12. These costs represent the payer’s perspective; therefore,  out-of-pocket costs are not included.

Statistical Analysis

All analyses were performed using SAS version 8.2 (SAS Institute, Cary, NC). We calculated and compared age- and sex-adjusted incidence rates of each outcome  per 1000 person-years using regression for incidence densities based on the first occurrence of the outcome.11 Annualized costs were adjusted for age and sex using SAS Proc GLM, and bivariate comparisons were made with the LSMEANS statement. Although cost data are typically nonnormal, we did not transform the data before analysis to allow for straightforward interpretation of the parameter estimates. Normalizing the data via log transformation did not change the direction or statistical significance of the results.

RESULTS

Data describing the 12,278 study subjects are given in Table 1. The mean (SD) age at registry entry was 66.1 (12.5) years, and 59.3% were men. Most (85.7%) entered the registry because of CVD (as opposed to cerebrovascular disease) diagnoses, most of which were recorded during an outpatient visit. Diabetes (19.4%) and chronic kidney disease as defined by an eGFR of less than 60 mL/min/1.73 m2 (22.2%) were common comorbidities.

During a mean (SD) follow-up of 45.8 (22.8) months, 53.5% of patients were hospitalized (Table 2). Patients averaged more than 2 outpatient visits per month and filled more than 4 prescriptions per month. Women averaged more annual visits than men (31.6 vs 23.0) and had more annual dispenses (60.4 vs 45.6) (P <.001 for both). Use of medications for secondary prevention of CVD was high among both sexes.

Table 3 compares the age- and sex-adjusted incidence rates per 1000 person-years of secondary CVD hospitalization, all-cause mortality, and the composite outcome for 13 risk factors dichotomized by baseline characteristics. For example, patients 65 years or older experienced the composite outcome at a sex-adjusted rate of 88.0 per 1000 person-years (95% confidence interval [CI], 84.3-91.8) compared with 36.0 per 1000 person-years (95% CI, 33.6-38.5) among patients younger than 65 years. Diabetes, entry into the registry because of prior hospitalization, and an eGFR of less than 60 mL/min/1.73 m2 were the strongest risk factors for secondary CVD hospitalization; age 65 years or older and an eGFR of less than 60 mL/min/1.73 m2 were the strongest risk factors for mortality. History of depression was strongly predictive of all 3 outcomes.

The total mean (SD) annual direct medical costs for the entire sample were $18,953 ($39,036), of which 42.8% ($8114 [$25,410]) were attributable to inpatient  costs, 39.3% ($7451 [$13,461]) were incurred in outpatient settings, and the remaining 17.9% ($3388 [$6954]) were for pharmaceuticals (Table 4). Costs were highly skewed; the median costs were substantially lower than the means. Almost all patients incurred at least some outpatient and pharmaceutical costs, but 46.5% had no inpatient costs.

Annualized age- and sex-adjusted costs, in total and for inpatient, outpatient, and pharmaceutical resources, are compared in Table 5 across 15 dichotomies. The greatest differences in total costs were found when comparing patients who did versus did not experience a secondary CVD hospitalization ($62,755 vs $13,509, P <.001). Other large differences included comparisons of patients with vs without diabetes ($27,258 vs $17,210), entry into the registry because of  prior hospitalization ($28,800 vs $16,895), an eGFR of less than 60 mL/min/1.73 m2 ($29,498 vs $16,326), depression ($26,681 vs $17,303), and death ($28,689  vs $17,779) (P <.001 for all). Although inpatient costs accounted for most of the observed differences, outpatient and pharmaceutical costs were also significantly different among these dichotomies.

DISCUSSION

 
Copyright AJMC 2006-2018 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
x
Welcome the the new and improved AJMC.com, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up
×

Sign In

Not a member? Sign up now!