Currently Viewing:
The American Journal of Managed Care January 2013
Closing the Personalized Medicine Information Gap: HER2 Test Documentation Practice
Ilia L. Ferrusi, PhD; Craig C. Earle, MD; Maureen Trudeau, MD; Natasha B. Leighl, MD; Eleanor Pullenayegum, PhD; Hoa Khong, MD; Jeffrey S. Hoch, PhD; and Deborah A. Marshall, PhD
Predicting Asthma Outcomes in Commercially Insured and Medicaid Populations
Richard H. Stanford, PharmD, MS; Manan B. Shah, PharmD, PhD; Anna O. D'Souza, BPharm, PhD; and Michael Schatz, MD, MS
Inside Out: Reversing the Focus on Emergency Departments to Enhance Efficiency
Adam Sharp, MD, MS; and A. Mark Fendrick, MD
Questioning the Widely Publicized Savings
Robert Cosway, FSA, MAAA; L. Allen Dobson, Jr, MD
Providers' Perspective on Diabetes Case Management: A Descriptive Study
Nacide Ercan-Fang, MD; Kiranjot Gujral, MD; Nancy Greer, PhD; and Areef Ishani, MD, MS
Can Targeted Messaging Encourage PCP Contact Before ED Visits?
Maria C. Raven, MD, MPH, MSc; Scott M. Kotchko, MA; and David A. Gould, PhD
Emergency Department Visits for Nonurgent Conditions: Systematic Literature Review
Lori Uscher-Pines, PhD, MSc; Jesse Pines, MD, MBA; Arthur Kellermann, MD, MPH; Emily Gillen, MA; and Ateev Mehrotra, MD, MS
Currently Reading
Process, Cost, and Clinical Quality: The Initial Oral Contraceptive Visit
Michael J. McMullen, MD; Samuel W. Woolford, PhD; Charles L. Moore, MBA; and Barry M. Berger, MD
Embracing a Diversified Future for US Primary Care
Timothy Hoff, PhD
Full Coverage for Hypertension Drugs in Rural Communities in China
Baorong Yu, PhD; Xiaojuan Zhang, MS; and Guijing Wang, PhD
Cost-Effectiveness of Pneumococcal and Influenza Vaccination Standing Order Programs
Chyongchiou Jeng Lin, PhD; Richard K. Zimmerman, MD, MPH; and Kenneth J. Smith, MD, MPH

Process, Cost, and Clinical Quality: The Initial Oral Contraceptive Visit

Michael J. McMullen, MD; Samuel W. Woolford, PhD; Charles L. Moore, MBA; and Barry M. Berger, MD
Linking variation in process with cost and quality provides the opportunity for identifying low-cost, high-quality processes.
Objectives: To demonstrate how the analysis of clinical process, cost, and outcomes can identify healthcare improvements that reduce cost without sacrificing quality, using the example of the initial visit associated with oral contraceptive pill use.

Study Design: Cross-sectional study using data collected by HealthMETRICS between 1996 and 2009.

Methods: Using data collected from 106 sites in 24 states, the unintended pregnancy (UIP) rate, effectiveness of patient education, and unit visit cost were calculated. Staff type providing education and placement of education were recorded. Two-way analysis of variance models were created and tested for significance to identify differences between groups.

Results: Sites using nonclinical staff to provide education outside the exam were associated with lower cost, higher education scores, and a UIP rate no different from that of sites using clinical staff. Sites also providing patient education during the physical examination were associated with higher cost, lower education scores, and a UIP rate no lower than that of sites providing education outside of the exam.

Conclusions: Through analyzing process, cost, and quality, lower-cost processes that did not reduce clinical quality were identified. This methodology is applicable to other clinical services for identifying low-cost processes that do not result in lower clinical quality. By using nonclinical staff educators to provide education outside of the physical examination, sites could save an average of 32% of the total cost of the visit.

(Am J Manag Care. 2013;19(1):e14-e21)
This study compares the cost and clinical quality associated with 2 specific processes used to provide the initial visit for oral contraceptive pills.

  • Using nonclinical staff to provide patient education reduces staff cost and may be associated with better education scores.

  • Providing patient education exclusively outside of the exam reduces staff cost and is not associated with decreased clinical quality.

  • Utilizing both processes described above could save sites 32% of the total visit cost.
Because reducing healthcare costs and improving access to highquality care are pressing issues, there is a constant need to improve the processes used to deliver care to reduce cost without negatively impacting clinical quality. Unfortunately, few studies explore the relationship between clinical process and outcome. Clinicians and administrative staff are left to make cost-saving process changes without access to process-specific data showing how those changes will impact clinical quality. There are tremendous variations in both clinical process and unit cost for the delivery of a given clinical service across the country.1 While it has also been shown that variations in clinical decision making exist,2 clinical process variations (eg, the sequencing of the steps during a visit, staff mix providing those steps, scheduling structure) have a significant impact on cost.

This study used the initial visit for obtaining oral contraceptive pills (OCPs) as a model to demonstrate how clinical processes and outcomes can be linked to help reduce costs while maintaining clinical quality. The initial visit for obtaining OCPs was chosen as the clinical model for study because it is an easily defined outpatient visit with a high volume and a clearly defined patient population. With an estimated 66 million US women of reproductive age3 and 10.7 million US women currently using OCPs,4 slight reductions in visit cost could result in substantial savings to the healthcare system. This study focuses on the process used to deliver patient education regarding OCP use during the initial OCP visit. Specifically, variation in the mix of staff utilized and the placement of the patient education step within the initial OCP visit process were considered. The goal was to determine whether the staff used to provide the education or the placement of the education in the initial OCP visit had any impact on cost or clinical quality.


This cross-sectional study utilizes data that were collected by Health- METRICS staff from 106 participating women’s healthcare sites in 24 states between 1996 and 2009. Settings included county health departments, private healthcare providers, community health centers, and others. These data were collected under contractual arrangement with HealthMETRICS and represent a broad spectrum of processes associated with the initial OCP process. HealthMETRICS is a consulting company providing the information healthcare managers need to ensure that they are providing care as effectively and efficiently as possible. All of the participating sites voluntarily asked to participate in the HealthMETRICS Family Planning Optimal Performance Project. HealthMETRICS did not choose sites to participate. From our experience analyzing the process for delivering family planning services over the last 15 years, the analysis includes most if not all of the different processes for providing this service.

Two or more HealthMETRICS staff members traveled to each site to interview clinic staff, document the initial OCP process, and distribute data collection tools. Subjects were all women at least 16 years of age without any significant medical complaints at the time of their visit. We focused on the data related to the patient education portion of the initial OCP visit, including the staff utilized, the placement of the education in the initial OCP process, the effectiveness of the patient education, the unintended pregnancy (UIP) rate, and unit visit costs.

Clinical Quality

Effectiveness of patient education and observed UIP rate were used as markers of clinical quality. Effectiveness of patient education was assessed through 4 survey questions that asked subjects to rate how clearly they understood 4 key components of the counseling portion of the visit: when to start the pill, what to do if a dose is missed, what to do if there is spotting or bleeding while on the pill, and possible side effects (Appendix). For each site, the percentage of patients who gave the highest rating for all 4 questions was calculated. Sites collecting fewer than 30 surveys (n = 57) were excluded.

Chart reviews were conducted by clinic staff at each site. The number of patients who had a UIP within 6 months of their initial OCP visit, as determined at the follow-up visit, was tallied for each site and reported as the number of UIPs per 50 patients. Sites that reviewed fewer than 40 charts (n = 1) were excluded.

Staffing Structure

HealthMETRICS staff visited sites and identified the level of the staff members used to provide patient education. While clinical staff performed the physical exam for all patients at all sites, the educational component of the initial OCP visit was conducted in multiple ways by a variety of clinical and nonclinical staff. Clinical staff was considered to be registered nurses (RNs) and nurse practitioners. Nonclinical staff included all other staff types that participated in the visit (Table 1).

Sites were categorized based on the level of staff used to provide the education. Sites exclusively utilizing clinical staff were categorized as having a higher-cost process. Sites utilizing nonclinical staff were categorized as having a lower-cost process. These designations were based on the higher hourly cost associated with RNs and nurse practitioners.

The staff level used to provide patient education varied among sites, with 13 distinct models being used (Table 1). The most common staff level used was the RN (52% of sites). A higher-cost model was used by 57% of sites; 43% used a lower-cost model.

Position of Education Step Within OCP Initial Visit Process

The initial OCP visit process largely consists of 3 steps: intake, exam, and checkout. The point in time at which education was provided varied. Some sites provided at least some education during the physical exam step, while others provided education only outside of the exam. At least some education was provided during the physical exam by 79% of sites and only outside of the exam by 21% of sites.

Unit Visit Cost

Unit cost was measured through a combination of time logs, financial data provided by the sites, and appointment schedules. The annual visit volume was recorded. Direct costs were adjusted for inflation using data from the Consumer Pricing Index. Indirect costs such as administrative overhead were not considered. Salaries were adjusted for regional differences and inflation using data from the employee cost index. These data were used to calculate an average hourly cost for each staff level. Time and staffing data gathered by the time logs were used to allocate the labor cost to each step in the visit. The annual cost of staff directly involved in the visit but not interacting directly with the patient was allocated over the annual visit volume. Unit staff cost was defined as the sum of all direct labor unit costs. Unit total cost was defined as the sum of the unit staff cost and all other nonlabor direct costs.

Statistical Analysis

Our objective was to determine whether the factors representing the different staff mixes and the placement of the education step had any impact on either the education score, the UIP rate, or unit staff cost. We hypothesized the 2-way analysis of variance (ANOVA) model

y(i,j,k) = μ + S(i) + P(j) + S(i)P(j) + ε(i,j,k)

for y(i,j,k) the education score/UIP/unit staff cost for site k utilizing staff mix i and education step placement j; S(i)P(j) the interaction between factors; and ε the associated random error. The null hypothesis is that there was no effect on clinical quality or cost due to the main effects of who educates the patient and when education occurs, or due to the interaction of these factors.


Process Versus Clinical Quality

The mean education score was 88% with a coefficient of variation of 7%. The UIP rate varied more, with a mean of 0.60 and coefficient of variation of 161% (Table 2, Figure 1). A general linear model was used to test the 2-way ANOVA for education score and UIP using SPSS version 18 (SPSS Inc, Chicago, Illinois).

The results for the education score indicate that there was a significant effect of staff mix (P = .026) and placement of education step (P = .037) on education score. The interaction between these 2 variables was significant (P = .030). Sites that utilized nonclinical staff to provide education outside of the exam had the highest education score. When education was provided during the physical exam, clinical and nonclinical staff education scores were not statistically different. A total of 57 sites were excluded from this analysis because they collected fewer than 30 patient education surveys, resulting in 6 observations of nonclinical staff providing education outside the exam, 26 of clinical staff educating patients during the exam, and 8 in each of the remaining 2 groups. The 57 cases that were excluded were fairly evenly distributed (44% higher cost, 56% lower cost).

The results for UIP rate indicated that there was no staff mix effect (P = .548), no placement of education effect (P = .643), and no interaction effect (P = .195). The validity of the 2-way ANOVA analyses was predicated on demonstrating that the data were normally distributed and that the variances of the data were the same across all combinations. Levene’s test was used to confirm the equality-of-variance assumption for education score (P = .320) and UIP rate (P = .338). Normality was tested using the Shapiro-Wilk test and was violated for 1 subgroup in education score data. The violation was identified with 1 outlier. After removing the outlier, the conclusions did not change. All subgroups of the UIP data failed the Shapiro-Wilk test for normality. A bootstrap analysis was performed to analyze the 2-way ANOVA model for UIP rate. The bootstrap analysis does not require the normality assumption necessitated by our ANOVA analysis. The bootstrap results confirmed the results of the ANOVA model.

Process Versus Unit Cost

There was wide variation in unit staff cost and unit total cost. Unit total cost ranged from $40.22 to $247.76 with a mean of $98.90 (median of $89.77) and a coefficient of variation of 38.5%. Unit staff cost ranged from $12.26 to $205.02 with a mean of $70.46 (median of $61.86) and a coefficient variation of 45% (Table 2, Figure 2). The mean unit staff cost for sites utilizing a higher-cost process was $81.05 and for those with a lower-cost process it was $56.64. Mean unit staff cost for sites providing patient education during the physical exam was $73.52, and for those providing education only outside of the physical exam it was $58.75 (Table 2, Figure 2).

Copyright AJMC 2006-2020 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
Welcome the the new and improved, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up