Currently Viewing:
The American Journal of Managed Care March 2015
Currently Reading
Evaluation of Care Management Intensity and Bariatric Surgical Weight Loss
Sarit Polsky, MD, MPH; William T. Donahoo, MD; Ella E. Lyons, MS; Kristine L. Funk, MS, RD; Thomas E. Elliott, MD; Rebecca Williams, DrPh, MPH; David Arterburn, MD, MPH; Jennifer D. Portz, PhD, MSW; and Elizabeth Bayliss, MD, MSPH
Innovation in Plain Sight
Karen Ignagni, MBA, President and Chief Executive Officer, America's Health Insurance Plans
Early Changes in VA Medical Home Components and Utilization
Jean Yoon, PhD, MHS; Chuan-Fen Liu, PhD, MPH; Jeanie Lo, MPH; Gordon Schectman, MD; Richard Stark, MD; Lisa V. Rubenstein, MD, MSPH; and Elizabeth M. Yano, PhD, MSPH
Are Healthcare Quality "Report Cards" Reaching Consumers? Awareness in the Chronically Ill Population
Dennis P. Scanlon, PhD; Yunfeng Shi, PhD; Neeraj Bhandari, MD; and Jon B. Christianson, PhD
Developing a Composite Weighted Quality Metric to Reflect the Total Benefit Conferred by a Health Plan
Glen B. Taksler, PhD; and R. Scott Braithwaite, MD, MSc, FACP
Insurance Impact on Nonurgent and Primary Care-Sensitive Emergency Department Use
Weiwei Chen, PhD; Teresa M. Waters, PhD; and Cyril F. Chang, PhD
Cost Differential by Site of Service for Cancer Patients Receiving Chemotherapy
Jad Hayes, MS, ASA, MAAA; J. Russell Hoverman, MD, PhD; Matthew E. Brow, BA; Dana C. Dilbeck, BA; Diana K. Verrilli, MS; Jody Garey, PharmD; Janet L. Espirito, PharmD; Jorge Cardona, BS; and Roy Beveridge, MD
The Combined Effect of the Electronic Health Record and Hospitalist Care on Length of Stay
Jinhyung Lee, PhD; Yong-Fang Kuo, PhD; Yu-Li Lin, MS; and James S. Goodwin, MD
Strategy for a Transparent, Accessible, and Sustainable National Claims Database
Robin Gelburd, JD, BA
Treatment Patterns, Healthcare Utilization, and Costs of Chronic Opioid Treatment for Non-Cancer Pain in the United States
David M. Kern, MS; Siting Zhou, PhD; Soheil Chavoshi, MS; Ozgur Tunceli, PhD; Mark Sostek, MD; Joseph Singer, MD; and Robert J. LoCasale, PhD
Trends in Mortality Following Hip Fracture in Older Women
Joan C. Lo, MD; Sowmya Srinivasan, MD; Malini Chandra, MS, MBA; Mary Patton, MD; Amer Budayr, MD; Lucy H. Liu, MD; Gene Lau, MD; and Christopher D. Grimsrud, MD, PhD
Long-Term Outcomes of Analogue Insulin Compared With NPH for Patients With Type 2 Diabetes Mellitus
Julia C. Prentice, PhD; Paul R. Conlin, MD; Walid F. Gellad, MD, MPH; David Edelman, MD; Todd A. Lee, PharmD, PhD; and Steven D. Pizer, PhD
Factors Affecting Medication Adherence Trajectories for Patients With Heart Failure
Deborah Taira Juarez, ScD; Andrew E. Williams, PhD; Chuhe Chen, PhD; Yihe Goh Daida, MS; Sara K. Tanaka, MPH; Connie Mah Trinacty, PhD; and Thomas M. Vogt, MD, MPH

Evaluation of Care Management Intensity and Bariatric Surgical Weight Loss

Sarit Polsky, MD, MPH; William T. Donahoo, MD; Ella E. Lyons, MS; Kristine L. Funk, MS, RD; Thomas E. Elliott, MD; Rebecca Williams, DrPh, MPH; David Arterburn, MD, MPH; Jennifer D. Portz, PhD, MSW; and Elizabeth Bayliss, MD, MSPH
This study examines the effect of pre- and postoperative care management intensity on weight loss outcomes after bariatric surgery in 9 US centers.
Objectives: To examine the effect of pre- and postoperative care management on weight loss following bariatric surgery. Study Design: We conducted a retrospective cohort study supplemented by cross-sectional surveys across 9 bariatric surgery centers.

Methods: Based on the intensity of patient contact, care management intensity (CMI) was defined as high, moderate, or low for preoperative programs, and high or low for postoperative programs. Multivariable linear regression assessed 1- and 2-year post operative weight loss as a function of CMI.

Results: In the 9 centers, 4433 individuals underwent Roux-en-Y gastric bypass or adjustable gastric band placement between 2005 and 2009. Two sites had low, 5 had moderate, and 2 had high preoperative CMI; 5 sites had low and 4 had high postoperative CMI. In analyses stratified by procedure and adjusted for multiple covariates including site, we found no statistically significant associations between either preoperative or postoperative CMI and post operative change in body mass index at year 1 or year 2. Results were limited by heterogeneity of care management across sites and an inability to assess adherence to care management programs.

Conclusions: Prospective investigations that incorporate quantifiable measures of CMI and measure individual adherence to components of care management programs are needed to more accurately determine the effect of care management on weight loss. Additional investigations should examine the effect of CMI on other relevant outcomes, such as nutritional status and quality of life, that may be more directly affected by care management.

Am J Manag Care. 2015;21(3):182-189
This retrospective cohort study examined the effect of preoperative and postoperative care management intensity on weight loss outcomes 1 and 2 years after bariatric surgery.
  • There is substantial variation in care management intensity across practices.
  • Care management intensity did not affect weight loss in 4433 individuals who underwent Roux-en-Y gastric bypass and adjustable gastric band placement. 
  • Care management intensity is a multidimensional process that is difficult to quantify. 
  • Prospective studies are needed to assess the effect of bariatric surgical care management on outcomes other than weight change.
Eligibility criteria for bariatric surgery, defined by body mass index (BMI) and weight-related comorbidities, are nationally recognized.1 However, while pre- and postoperative care management processes are strongly recommended, they are not standardized, and the effect of varying intensities of pre- and postoperative multidisciplinary care processes on outcomes is unclear.

Bariatric surgical guidelines recommend a multidisciplinary team that includes medical, nutritional, and behavioral consultants and a detailed preoperative evaluation.1,2 Designation as a bariatric surgical “Center of Excellence” requires multidisciplinary staff, pre- and postoperative patient education and counseling, and relevant long-term followup.3,4 However, recommendations on specific components of pre- and postoperative care management are not well defined and may include support groups, mental healthcare, nutritional support, and medical management of specific comorbidities.1,5 The lack of specific recommendations is due in part to an absence of evidence on effective components and intensity of care management for bariatric surgical patients.6 One descriptive review of 123 centers of excellence found great variation in staffing and services provided, with notably fewer services during the postoperative period.7

Because levels of pre- and postoperative care management intensity (CMI) have different implications for healthcare resources and for patient preferences, there is a need to better define and systematically evaluate the types of care management processes that are associated with successful long-term surgical weight loss. The intensity of nonsurgical weight loss programs has been previously quantified based on the number of sessions, frequency of contacts, length of contacts, use of educational materials, and presence of specific behavioral and ancillary components.8-10 Based on these assessments— originally developed under the auspices of the US Preventive Services Task Force—we sought to determine how different levels of CMI affect long-term weight loss outcomes among bariatric surgery patients.

The aim of our investigation was to assess 1- and 2-year weight loss following bariatric surgical procedures as a function of pre- and postoperative CMI across 9 health plans and care delivery systems participating in the “Scalable PArtnering Network” (SPAN), a distributed research network.11 We hypothesized that high preand postoperative CMI would be associated with the most weight loss, low CMI with the least amount of weight loss, and moderate intensity programs with intermediate weight loss 1 and 2 years postoperatively.


Study Setting and Design

We conducted a retrospective cohort study supplemented by cross-sectional surveys in 9 sites participating in the SPAN Network for comparative effectiveness research (see Acknowledgments). This study was conducted in accordance with the Declaration of Helsinki, and was approved by the Kaiser Permanente Colorado (KPCO) Institutional Review Board (IRB); the requirement for informed consent was waived. Participating sites either ceded IRB oversight to the KPCO IRB or obtained IRB approval from their sites’ IRBs.

Study Cohort

We included individuals who met the following criteria: 1) primary bariatric surgical procedure between 2005 and 2009; 2) procedure was a Roux-en-Y gastric bypass (RYGB) or adjustable gastric band (AGB) placement; 3) aged at least 21 years old at the time of surgery; 4) at least 1 preoperative BMI ≥30 kg/m2 in the year prior to surgery; and 5) 1 year of preoperative and 1 year of postoperative health plan enrollment. We excluded individuals who had a bariatric surgical adjustment, revision, sleeve gastrectomy, or bariatric surgery status code (V45.86) prior to the bariatric surgery procedure. The few sleeve gastrectomy patients were eliminated due to inconsistencies with procedure coding during the cohort period.

Data Collection

We collected site-level care management information through 2 cross-sectional surveys: 1) an open-ended survey covering eligibility criteria for surgery, surgical procedures performed, preoperative surgical programs, patient education curricula, weight management counseling, postoperative programs, and program variation; and 2) aclose-ended survey covering duration, type, and frequency of pre- and postoperative counseling, including weight management and other medical visits with clinicians; behavioral, dietary, and physical activity counseling; and mental health evaluations. Both surveys covered the time period from 2004 to 2010.

Individual-level data were extracted from site-specific obesity data marts with standardized data structures populated by data from electronic medical records at each site.

Determination of Program Intensities

We used a modified Delphi method to assign intensity ratings to preoperative and postoperative care management processes at each site. Based on published criteria that quantify CMI for nonsurgical weight-loss programs, we based assessments of site-level CMI on frequency, duration, and overall components of care management.10 We also considered length of preoperative and postoperative program enrollment, number and type of participating clinical staff, educational curricula and materials, requirements for preoperative participation, number and frequency of counseling sessions (covering issues related to weight management, surgery, medical visits, behavior, diet, physical activity, and mental health), and postoperative tasks for weight management and for surgical care. Two independent reviewers (SP and WTD) scored each of the sites as low, moderate, or high preoperative CMI. Due to less variability across sites, postoperative CMI was dichotomized into low and high. If there was no consensus, a third reviewer (EB) scored the site, and the overall rating was determined by agreement between at least 2 of the 3 reviewers.

Data Analysis

All statistical analyses were performed utilizing SAS version 9.2 software (SAS, Cary, North Carolina). The independent variables of interest were level of preoperative CMI and level of postoperative CMI. We used the bariatric procedure date as the index date in defining the pre- and postoperative time periods. The primary dependent variable of interest was the change in BMI at 1 and 2 years post bariatric procedure as separate functions of pre- and postoperative CMI. We calculated the change in BMI as the difference between the BMI closest to the surgery in the preoperative period and the furthest measured BMI 1 year and 2 years postoperatively.

Baseline characteristics were reported as means, medians, and standard deviations for continuous variables, and proportions for nominal- and ordinal-level data. We assessed the differences in means for continuous variables using t tests and Wilcoxen rank-sum tests, and differences in proportions for categorical variables using χ2 tests of association. We used 2 separate linear mixed effects regression models with sites as a random effect to analyze the change in BMI as a function of pre- and postoperative CMI at years 1 and 2; we also ran the same models stratified by bariatric procedure. The demographic characteristics, insurance type, year of procedure, comorbidity history variables, and Charlson Comorbidity Index scores were entered as covariates.12,13


A total of 13,821 individuals across the 9 sites underwent bariatric surgery between 2005 and 2009. After inclusion and exclusion criteria were applied, the final cohort was composed of 4433 individuals. There were 2 primary reasons for exclusion from the final cohort: 1) receipt of care in nonintegrated settings, which affected 70% of enrollees at 1 site and 88% of enrollees at a second site and prevented capture of BMI data from electronic medical records; and 2) insufficient preoperative enrollment across sites preventing capture of temporally comparable baseline BMI data. Relative to eligible cohort members, the 5717 individuals excluded for these 2 reasons were slightly more likely to undergo AGB (25% vs 20%) thanRYGB (71% vs 77%), were less likely to be female (77% vs 80%), were younger (aged 44.7 years vs 47.4 years), had slightly lower rates of diabetes (33% vs 37%) and hypertension (60% vs 64%), and were more likely to have commercial insurance (93% vs 73%).

Clinicians with knowledge of bariatric surgical programs at all sites responded to both surveys. Preoperative CMI was rated as low for 2 sites, moderate for 5 sites, and high for 2 sites. Postoperative CMI was rated as low for 5 sites and high for 4 sites. Program ratings and bariatric surgical procedures performed at each site are presented in Table 1. Table 2 describes the spectrum of pre- and postoperative care management components within each category of program intensity. Although there was substantial heterogeneity of CMI across sites, in general, sites with higher preoperative CMI engaged patients in higher frequency and more multidimensional interactions over a longer time period than those with moderate CMI. A similar pattern was observed for those with moderate to low CMI. All sites incorporated behavioral, dietary, and mental health counseling into preoperative care management, and all but 1 included physical activity counseling. Likewise, sites rated as having higher intensity postoperative care management in general had a longer duration of follow-up and more frequent and more varied interactions with patients than sites with lower intensity postoperative care management.

Cohort characteristics by preoperative program intensity are presented in Table 3. Individuals in moderate intensity programs were less likely to have commercial health insurance (65% moderate vs 83% high and 90% low), had a lower modified Charlson Comorbidity Index score, and had a marginally higher preoperative BMI (46.6 kg/m2 moderate vs 45.8 kg/m2 high and 45.7 kg/m2 low).

The mean (95% CI) unadjusted decrease in BMI for the overall cohort was 12.7 (12.5-12.9) kg/m2 at year 1 and 13.9 (13.7-14.0) kg/m2 at year 2. Mean decrease in unadjusted BMI ranged from 14.2 (14.1-14.4) kg/m2 for bypass patients to 6.7 (6.4-7.0) kg/m2 for band patients at year 1, and 15.6 (15.4-15.8) kg/m2 to 7.6 (7.2-7.9) kg/m2 for bypass and band patients, respectively, at year 2. Table 4 presents adjusted associations between preoperative CMI and change in BMI for the whole cohort and stratified by bariatric procedure. We found no statistically significant change in BMI across CMI categories either for the overall cohort or when stratified by procedure. Sensitivity analyses, in which we re-categorized preoperative moderate intensity programs into high or low intensity, did not change the postoperative BMI results. Likewise, we found no significant associations between postoperative CMI and change in BMI either for the overall cohort or stratified by procedure (Table 5).


In this exploratory retrospective cohort analysis of 4433 individuals who underwent RYGB and AGB at 9 bariatric surgery centers across the United States, we found substantial heterogeneity of pre- and postoperative care management practices surrounding bariatric surgical procedures at the different centers. Although we did not demonstrate an association between CMI and change in BMI at 1 or 2 years postoperatively, this investigation should serve as a call for more research on the effect of care management on bariatric surgical outcomes.

Copyright AJMC 2006-2018 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
Welcome the the new and improved, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up