Currently Viewing:
The American Journal of Managed Care May 2015
Comparison of Provider and Plan-Based Targeting Strategies for Disease Management
Ann M. Annis, MPH, RN; Jodi Summers Holtrop, PhD, MCHES; Min Tao, PhD; Hsiu-Ching Chang, PhD; and Zhehui Luo, PhD
Making Measurement Meaningful
Christine K. Cassel, MD, President and CEO, National Quality Forum
Care Fragmentation, Quality, and Costs Among Chronically Ill Patients
Brigham R. Frandsen, PhD; Karen E. Joynt, MD, MPH; James B. Rebitzer, PhD; and Ashish K. Jha, MD, MPH
Results From a National Survey on Chronic Care Management by Health Plans
Soeren Mattke, MD, DSc; Aparna Higgins, MA; and Robert Brook, MD, ScD
Association Between the Patient-Centered Medical Home and Healthcare Utilization
Rainu Kaushal, MD, MPH; Alison Edwards, MStat; and Lisa M. Kern, MD, MPH
Transforming Oncology Care: Payment and Delivery Reform for Person-Centered Care
Kavita Patel, MD, MS; Andrea Thoumi, MSc; Jeffrey Nadel, BA; John O'Shea, MD, MPA; and Mark McClellan, MD, PhD
True "Meaningful Use": Technology Meets Both Patient and Provider Needs
Heather Black, PhD; Rodalyn Gonzalez, BA; Chantel Priolo, MPH; Marilyn M. Schapira, MD, MPH; Seema S. Sonnad, PhD; C. William Hanson III, MD; Curtis P. Langlotz, MD, PhD; John T. Howell, MD; and Andrea J. Apter, MD, MSc
Innovative Care Models for High-Cost Medicare Beneficiaries: Delivery System and Payment Reform to Accelerate Adoption
Karen Davis, PhD, APN; Christine Buttorff, PhD; Bruce Leff, MD; Quincy M. Samus, PhD; Sarah Szanton, PhD, APN; Jennifer L. Wolff, PhD; and Farhan Bandeali, MSPH
Annual Diabetic Eye Examinations in a Managed Care Medicaid Population
Elham Hatef, MD, MPH; Bruce G. Vanderver, MD, MPH; Peter Fagan, PhD; Michael Albert, MD; and Miriam Alexander, MD, MPH
Systematic Review of Benefit Designs With Differential Cost Sharing for Prescription Drugs
Oluwatobi Awele Ogbechie, MD, MBA; and John Hsu, MD, MBA, MSCE
Changing Trends in Type 2 Diabetes Mellitus Treatment Intensification, 2002-2010
Rozalina G. McCoy, MD; Yuanhui Zhang, PhD; Jeph Herrin, PhD; Brian T. Denton, PhD; Jennifer E. Mason, PhD; Victor M. Montori, MD; Steven A. Smith, MD; Nilay D. Shah, PhD
Currently Reading
Medicaid-Insured and Uninsured Were More Likely to Have Diabetes Emergency/Urgent Admissions
Monica A. Fisher, PhD, DDS, MPH, MS; and Zhen-qiang Ma, MD, MPH, MS
Measuring Patient-Centered Medical Home Access and Continuity in Clinics With Part-Time Clinicians
Ann-Marie Rosland, MD, MS; Sarah L. Krein, PhD, RN; Hyungjin Myra Kim, ScD; Clinton L. Greenstone, MD; Adam Tremblay, MD; David Ratz, MS; Darcy Saffar, MPH; and Eve A. Kerr, MD, MPH

Medicaid-Insured and Uninsured Were More Likely to Have Diabetes Emergency/Urgent Admissions

Monica A. Fisher, PhD, DDS, MPH, MS; and Zhen-qiang Ma, MD, MPH, MS
Medicaid-insured type 2 diabetes mellitus patients, just like the uninsured, are more likely to be hospitalized through emergency/urgent admissions.
ABSTRACT
 
Objectives: To evaluate the associations between potentially avoidable diabetes-related emergency/urgent hospital admissions and different health insurance status (ie, Medicaid, Medicare,
uninsured, private), along with other characteristics including sociodemographic status (age, race/ethnicity, gender, region), hospitalization status (previous hospitalizations, weekend admissions), and health status (complications, comorbidities), among patients with type 2 diabetes mellitus (T2DM).
 
Study Design: The 2011 data set of all inpatient discharge records with a primary diagnosis of T2DM from all hospitals in Pennsylvania were included in the analyses.

Methods: Multivariable logistic regression modeling with diabetes-related emergency/urgent hospitalizations as the dependent outcome variable and health insurance status as the main exposure independent variable, adjusting for age, race/ethnicity, gender, region, previous hospitalizations, weekend admissions, complications, and comorbidity. Hosmer and Lemeshow
goodness-of-fit test was used for logistic model fit analysis.
 
Results: Nearly 91% of 17,097 potentially avoidable diabetes-related hospitalizations were emergency/urgent admissions for T2DM patients in Pennsylvania during 2011. Uninsured and Medicaidinsured patients were 2.1 (adjusted odds ratio [AOR], 2.11; 95% CI, 1.23-3.61) and 1.8 (AOR, 1.78; 95% CI, 1.44-2.20) times more likely than privately insured patients, respectively, to be admitted through emergency/urgent admissions. There was no statistically significant difference in emergency/urgent admissions between Medicaid and uninsured (AOR, 0.85; 95% CI, 0.49-1.47).

Conclusions: Medicaid-insured T2DM patients, like the uninsured, are more likely to be hospitalized through emergency/urgent admissions. The presumption that insured individuals with diabetes are more likely than the uninsured to manage and control the progression of their condition, and receive care in the right setting, is not supported for those with Medicaid coverage.

Am J Manag Care. 2015;21(5):e312-e319
Take-Away Points

Multivariate analyses of medical insurance status affecting diabetes-related emergency/urgent hospitalization charges are sparse, but essential when making managed care decisions regarding health coverage expansion.
  • Medicaid-insured type 2 diabetes mellitus (T2DM) patients, just like the uninsured, are more likely to be hospitalized through emergency/urgent admissions.
  • The presumption that insured individuals with T2DM are more likely than the uninsured to manage and control the progression of their condition, and receive care in the right setting, is not supported for those with Medicaid coverage.
  • Further research is needed to assess the services provided by Medicaid and the health insurance exchanges that promote compliance with self-care and management recommendations, and improve access to and utilization of appropriate ambulatory/primary care services.
Diabetes and diabetes-related comorbidity are important public health problems due to the substantial disease and cost burdens.1,2 Approximately 22.3 million Americans, or 7% of the US population, were diagnosed with diabetes in 2012; individuals with diabetes account for more than 20% of US healthcare dollars spent, with hospital inpatient care incurring 43% of the $176 billion total direct diabetes medical cost.1 Because hospitalizations account for the largest share of total healthcare costs, the Agency for Healthcare Research and Quality (AHRQ) developed Prevention Quality Indicators (PQIs) to identify hospital admissions that were potentially avoidable with timely access to primary care and appropriate disease management.3-6 Using AHRQ’s PQIs as the recognized metric, an estimated 12.4% of the hospitalizations in Pennsylvania are potentially avoidable, and of that 12.4%, 1 in 8 are diabetes-related,7 despite 96% of the diabetes-related hospitalizations being preventable.8

Hospitalization costs related to poor management of diabetes are major contributors to the healthcare costs of those with diabetes. This is especially important when considering Medicaid expansion under the Affordable Care Act (ACA), because Medicaid and Medicare are the primary payers for 49% of the diabetes-related emergency/urgent hospital admissions.9 Studies assess factors related to avoidable hospitalizations as indicators of access to primary healthcare and corresponding healthcare costs.3-6,9,10 Health insurance is a key determinant of access to care and health outcomes,11 such that health insurance status can significantly impact effective management and control of diabetes. For instance, both uninsured and Medicaid-insured individuals have less favorable health outcomes than those who are privately insured and/or Medicare-insured,12,13 including avoidable hospitalizations.14-18 In addition to health insurance status, having a previous hospital visit or readmission is typically assessed in studies of potentially avoidable hospitalizations.19-26

However, not all avoidable hospitalizations are the same. In particular, whether a hospital visit is an emergency admission or non-emergency admission for ambulatory care–sensitive conditions (eg, diabetes) is an indicator of process and coordination of care.16,27-29 That is, unplanned emergency/urgent hospital admissions are an indicator of poorly managed acute diabetes conditions, whereas elective or planned admissions generally suggest that patients received diabetes management care in the right setting such that their conditions permitted adequate time to schedule the services. Due to the paucity of scientific evidence, studies are especially needed to gain a better understanding of the effect of health insurance status on emergency/urgent admissions, because 94% of potentially avoidable diabetes-related hospitalizations fall into this category.9

To better understand the factors influencing the potentially avoidable emergency/urgent diabetes-related hospitalizations, the objective of this study is to quantify the independent association between potentially avoidable diabetes-related emergency/urgent hospital admissions and different health insurance status (ie, Medicaid, Medicare, uninsured, private), along with other characteristics including sociodemographic status (ie, age, race/ethnicity, gender, region), hospitalization status (ie, previous hospitalizations, weekend admissions), and health status (ie, complications, comorbidities), among those with the most common type of diabetes, type 2 diabetes mellitus (T2DM).

METHODS

The Pennsylvania Health Care Cost Containment Council (PHC4)—an independent state agency that collects approximately 1.9 million inpatient discharge records annually from all hospitals in Pennsylvania—provided the 2011 data set of inpatient discharge records from all the state’s hospitals, which was then analyzed. Potentially avoidable diabetes-related hospitalizations were defined based on AHRQ’s PQIs that are used with inpatient hospital discharge data to identify conditions that should be preventable with proper primary care.3-6 Potentially avoidable T2DM-related hospitalizations were defined as all hospitalizations with a primary discharge diagnosis of T2DM (International Classification of Diseases, Ninth Revision, Clinical Modification [ICD-9-CM] codes of 250.00-250.92 with a last digit of 0 or 2).

Description of outcome (dependent variable). The outcome, emergency/urgent hospital admission, was dichotomized (yes/no) based on the admission type that defined the hospital admission’s level of urgency. An emergency/urgent admission was defined as the patient requiring immediate medical intervention as a result of a severe, life-threatening, or potentially disabling condition; or the patient required immediate attention for the care and treatment of a physical or mental disorder. A non-emergency/urgent admission was defined as an elective/planned admission, with the patient’s condition permitting adequate time to schedule the services.

Description of main exposure (independent variable). Health insurance status was based on the primary payer type and categorized as Medicaid, Medicare, uninsured, and private.

Description of Other Explanatory Factors (Independent Variables)

Sociodemographic characteristics. The 4 sociodemographic characteristics that were assessed include age, race/ethnicity, gender, and region: 1) age: the patient’s age in years at the time of hospitalization, categorized as <20, 20-44, 45-64, or ≥6530; 2) race/ethnicity: patients were categorized as non-Hispanic white (NHW), non-Hispanic black, non-Hispanic other race, or Hispanic based on the combination of race and ethnicity information; 3) gender: if gender information was missing, it was imputed from prior (2000-2011) records; 4) region: facility region code was categorized as Philadelphia (includes 4 surrounding counties), Pittsburgh (includes Pittsburgh city, Allegheny County and 7 surrounding counties), and the rest of  the state (other 53 counties).

Hospitalization and Health Status. The 4 hospitalization and health-related statuses that were assessed include previous hospitalization, weekend admission, complications, and comorbidities: 1) previous hospitalization: categorized as “yes” or “no” and defined as any prior hospital admission with primary diagnosis of diabetes from 2000 to 2011; 2) weekend admission: categorized as “yes” or “no” based on the date of admission; 3) complications: defined based on the AHRQ’s PQI #1 Diabetes Short-Term Complications Admission Rate, and PQI #3 Diabetes Long-Term Complications Rate, along with PQI #14 Uncontrolled Diabetes Admission Rates.3-6 Complications were derived from the fourth digit of the primary diagnosis ICD-9-CM codes and categorized as: a) no complication; b) acute: coma, hyperosmolarity, ketoacidosis; c) chronic: renal manifestations, neurological manifestations, ophthalmic manifestations, peripheral circulatory disorders, and other complications.3-6 Thus, complications are a proxy measure for the progression of diabetes; 4) comorbidities as defined by the modified Charlson comorbidity index (CCI): the CCI predicts 10-year mortality based on weighted scores ranging from 0 to 35 for 17 conditions.31 All 8 secondary diagnoses were considered in the calculation of the CCI. Diabetes was excluded from CCI calculation so as not to double-count the impact of diabetes, because all assessed hospitalizations were diabetes-related. The CCI distribution ranged from 0 to 12, with 24% having a score of 3 or more. CCI categories were defined as 0, 1, 2, and 3 or more in order to keep the distribution (or data) balanced.

Statistical Analyses

Descriptive summary. First, descriptive analyses were performed to report the overall and characteristic-specific (independent variables) proportion of potentially avoidable diabetes-related hospitalizations that were emergency/urgent admissions for Pennsylvanians in 2011. This was followed by the corresponding unadjusted association or crude odds ratio (COR) between emergency/urgent hospitalizations and insurance status, sociodemographic status, hospitalization, and health status.

Multivariable logistic regression modeling. The independent association was calculated as the adjusted odds ratio (AOR) for potentially avoidable diabetes-related emergency/urgent hospitalizations and health insurance status, while simultaneously taking into account sociodemographic status, hospitalization status, and health status. Hosmer and Lemeshow’s goodness-of-fit test was used for logistic model fit analysis. The observed event rates matched expected event rates in all subgroups of the population in the final model.

RESULTS

Descriptive summary (Table 1). Among 17,097 potentially avoidable diabetes-related hospitalizations in Pennsylvania in 2011, 15,538 (90.9%) were emergency/urgent admissions. When considering only a single characteristic, the following associations with having potentially avoidable diabetes-related emergency/urgent admissions were quantified: 1) health insurance status: uninsured and Medicaid-insured patients were 3.1 and 2.4 times more likely, respectively, than privately insured patients; and Medicare-insured patients were approximately one-eighth less likely; 2) sociodemographics: younger patients were 1.3 to 2.7 times more likely than older patients aged ≥65 years, and minority patients were 2.2 to 2.9 times more likely than NHW patients. Hospitalizations in Philadelphia and Pittsburgh were approximately 3.1 times and 1.2 times, more likely, respectively, than admissions in the rest of the state; 3) hospitalization status: weekend admissions were 4.7 times more likely than weekday admissions; and first hospitalizations were 1.4 times more likely than those with a previous diabetes-related hospitalization(s); 4) health status: those with acute complications were 3.4 times more likely, and those with chronic complications were 2.6 times less likely, than those without complications, respectively. Patients with comorbidities were one-half to one-third as likely as patients with no comorbidity.

 
Copyright AJMC 2006-2020 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
x
Welcome the the new and improved AJMC.com, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up