Currently Viewing:
The American Journal of Managed Care Special Issue: HCV
Real-World Outcomes of Ledipasvir/Sofosbuvir in Treatment-Naïve Patients With Hepatitis C
Zobair M. Younossi, MD, MPH, FACG, AGAF, FAASLD; Haesuk Park, PhD; Stuart C. Gordon, MD; John R. Ferguson; Aijaz Ahmed, MD; Douglas Dieterich, MD; and Sammy Saab, MD, MPH
Sofosbuvir Initial Therapy Abandonment and Manufacturer Coupons in a Commercially Insured Population
Taruja D. Karmarkar, MHS; Catherine I. Starner, PharmD; Yang Qiu, MS; Kirsten Tiberg, RPh; and Patrick P. Gleason, PharmD
Improving HCV Cure Rates in HIV-Coinfected Patients - A Real-World Perspective
Seetha Lakshmi, MD; Maria Alcaide, MD; Ana M. Palacio, MD, MPH; Mohammed Shaikhomer, MD; Abigail L. Alexander, MS; Genevieve Gill-Wiehl, BA; Aman Pandey, BS; Kunal Patel, BS; Dushyantha Jayaweera, MD; and Maria Del Pilar Hernandez, MD
Does Patient Cost Sharing for HCV Drugs Make Sense?
Darius N. Lakdawalla, PhD; Mark T. Linthicum, MPP; and Jacqueline Vanderpuye-Orgle, PhD
A Way Out of the Dismal Arithmetic of Hepatitis C Treatment
Jay Bhattacharya, MD, PhD, Center for Primary Care and Outcomes Research, Stanford University School of Medicine; Guest Editor-in-Chief for the HCV special issue of The American Journal of Managed
Value of Expanding HCV Screening and Treatment Policies in the United States
Mark T. Linthicum, MPP; Yuri Sanchez Gonzalez, PhD; Karen Mulligan, PhD; Gigi A. Moreno, PhD; David Dreyfus, DBA; Timothy Juday, PhD; Steven E. Marx, PharmD; Darius N. Lakdawalla, PhD; Brian R. Edlin, MD; and Ron Brookmeyer, PhD
The Wider Public Health Value of HCV Treatment Accrued by Liver Transplant Recipients
Anupam B. Jena, MD, PhD; Warren Stevens, PhD; Yuri Sanchez Gonzalez, PhD; Steven E. Marx, PharmD; Timothy Juday, PhD; Darius N. Lakdawalla, PhD; and Tomas J. Philipson, PhD
Currently Reading
Costs and Spillover Effects of Private Insurers' Coverage of Hepatitis C Treatment
Gigi A. Moreno, PhD; Karen Mulligan, PhD; Caroline Huber, MPH; Mark T. Linthicum, MPP; David Dreyfus, DBA; Timothy Juday, PhD; Steven E. Marx, PharmD; Yuri Sanchez Gonzalez, PhD; Ron Brookmeyer, PhD; and Darius N. Lakdawalla, PhD

Costs and Spillover Effects of Private Insurers' Coverage of Hepatitis C Treatment

Gigi A. Moreno, PhD; Karen Mulligan, PhD; Caroline Huber, MPH; Mark T. Linthicum, MPP; David Dreyfus, DBA; Timothy Juday, PhD; Steven E. Marx, PharmD; Yuri Sanchez Gonzalez, PhD; Ron Brookmeyer, PhD; and Darius N. Lakdawalla, PhD
Expanding private-payer coverage of hepatitis C treatment may yield significant long-term cost savings for private payers, reduced costs to Medicare, and increased social value.
The model assumes Other Adults is a closed cohort in which infected individuals do not transmit HCV to uninfected individuals.17-19 This assumption is based on the introduction of mandatory HCV screening of blood products in 1992 and the observed low disease-transmission risk among adults who are not PWID or MSM-HIV.17,20 HCV can be transmitted by an infected individual in the PWID or MSM-HIV groups to an uninfected individual in the same group; uninfected individuals and those previously cured of HCV are at risk of becoming infected. Furthermore, patients can only be infected with 1 genotype at a time, but can become re-infected with any genotype after being cured.
 
Once infected with HCV, patients progress through disease states based on transition probabilities obtained from the literature (see eAppendix). The initial distribution of fibrosis stages is assumed independent of age and insurance status.21 We use the METAVIR scoring system to categorize liver fibrosis stages from F0 (no fibrosis) to F4 (most severe).  Successfully treated patients return to the pool of susceptible individuals and have the same reinfection probability as individuals who were never infected.
 
Patients are eligible for treatment if they meet the treatment coverage criteria specified by their insurance type. For the PWID and Other Adults groups, we computed the population’s initial insurance distribution and HCV prevalence by age, using the 5 most recent waves of the National Health and Nutrition Examination Survey (NHANES) (2003-2004 through 2011-2012), applying appropriate weights to generate nationally representative estimates.15,22 Due to the small sample of NHANES respondents in the MSM-HIV exposure group, we used prevalence estimates from the published literature.16,23,24 For all groups, insurance type was assumed constant throughout the simulation, except when patients entered Medicare at age 65. Only diagnosed patients may receive treatment, and based on published estimates of diagnosis rates, we assumed 50% of patients infected with HCV were diagnosed during any given model cycle.25
 
HCV treatment costs, medical expenditures (nontreatment medical costs), quality-adjusted life-year (QALY) weights, and mortality rates were derived from estimates in the published literature.26,27 All cost parameters were inflated to 2015 US dollars, and future costs and QALYs were discounted at an annual 3% rate.28 Treatment costs vary by genotype and fibrosis stage, while medical expenditures and QALY weights vary by disease state. Treatment efficacy, treatment costs, and medical expenditures do not vary by insurance status or over time, with the exception of treatment costs, which are discounted after 2 years to account for future market competition29 (see eAppendix for full details).
 
Treatment Scenarios
We simulated 3 treatment coverage scenarios over a 20-year period: a baseline scenario and 2 alternative scenarios with varying degrees of expanded treatment coverage. All scenarios assume that patients with Medicare, Medicaid, or private insurance coverage who meet the fibrosis stage criteria are treated with DAAs, while uninsured patients have no access to treatment.30-32
In the baseline scenario, we assumed all diagnosed publicly and privately insured patients infected with HCV in fibrosis stages F3 or F4 would receive treatment, following the American Association for the Study of Liver Diseases and Infectious Diseases Society of America guidelines for “highest priority for treatment,” which is consistent with general trends regarding payer coverage of HCV treatment.30,33-36 The alternative scenarios assumed that private insurers expand treatment coverage to either fibrosis stages F2-F4 or F0-F4.
 
Baseline Distribution of Insurance Status
Table 1 presents the baseline distribution of insurance status by risk group. Although more than 40% of the PWID and MSM-HIV groups are uninsured or covered by Medicaid, the majority (53%) of the Other Adults group has private insurance coverage. Even though treatment scenarios assume uninsured patients do not receive treatment, these patients may benefit from expanded private insurance treatment coverage through lower HCV transmission rates since fewer patients will transmit the disease after treatment.
 
Alternative Simulations
In addition to the treatment scenarios described above, we conducted 3 additional simulations. First, we assessed the spillover effects to Medicare solely driven by individuals transitioning into Medicare at age 65, by measuring Medicare spillovers for the Other Adults risk group only, which has no disease transmission in the model. Second, we calculated the impact of Medicare treatment coverage expansion on Medicare costs and computed spillover effects to private insurers, while holding constant private treatment coverage at the baseline. Finally, we explored the impact on Medicare if Medicaid expands treatment coverage simultaneously with private insurers.
 


 
Copyright AJMC 2006-2019 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
x
Welcome the the new and improved AJMC.com, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up