Currently Viewing:
The American Journal of Managed Care Special Issue: HCV
Real-World Outcomes of Ledipasvir/Sofosbuvir in Treatment-Naïve Patients With Hepatitis C
Zobair M. Younossi, MD, MPH, FACG, AGAF, FAASLD; Haesuk Park, PhD; Stuart C. Gordon, MD; John R. Ferguson; Aijaz Ahmed, MD; Douglas Dieterich, MD; and Sammy Saab, MD, MPH
Sofosbuvir Initial Therapy Abandonment and Manufacturer Coupons in a Commercially Insured Population
Taruja D. Karmarkar, MHS; Catherine I. Starner, PharmD; Yang Qiu, MS; Kirsten Tiberg, RPh; and Patrick P. Gleason, PharmD
Improving HCV Cure Rates in HIV-Coinfected Patients - A Real-World Perspective
Seetha Lakshmi, MD; Maria Alcaide, MD; Ana M. Palacio, MD, MPH; Mohammed Shaikhomer, MD; Abigail L. Alexander, MS; Genevieve Gill-Wiehl, BA; Aman Pandey, BS; Kunal Patel, BS; Dushyantha Jayaweera, MD; and Maria Del Pilar Hernandez, MD
Does Patient Cost Sharing for HCV Drugs Make Sense?
Darius N. Lakdawalla, PhD; Mark T. Linthicum, MPP; and Jacqueline Vanderpuye-Orgle, PhD
A Way Out of the Dismal Arithmetic of Hepatitis C Treatment
Jay Bhattacharya, MD, PhD, Center for Primary Care and Outcomes Research, Stanford University School of Medicine; Guest Editor-in-Chief for the HCV special issue of The American Journal of Managed
Value of Expanding HCV Screening and Treatment Policies in the United States
Mark T. Linthicum, MPP; Yuri Sanchez Gonzalez, PhD; Karen Mulligan, PhD; Gigi A. Moreno, PhD; David Dreyfus, DBA; Timothy Juday, PhD; Steven E. Marx, PharmD; Darius N. Lakdawalla, PhD; Brian R. Edlin, MD; and Ron Brookmeyer, PhD
The Wider Public Health Value of HCV Treatment Accrued by Liver Transplant Recipients
Anupam B. Jena, MD, PhD; Warren Stevens, PhD; Yuri Sanchez Gonzalez, PhD; Steven E. Marx, PharmD; Timothy Juday, PhD; Darius N. Lakdawalla, PhD; and Tomas J. Philipson, PhD
Currently Reading
Costs and Spillover Effects of Private Insurers' Coverage of Hepatitis C Treatment
Gigi A. Moreno, PhD; Karen Mulligan, PhD; Caroline Huber, MPH; Mark T. Linthicum, MPP; David Dreyfus, DBA; Timothy Juday, PhD; Steven E. Marx, PharmD; Yuri Sanchez Gonzalez, PhD; Ron Brookmeyer, PhD; and Darius N. Lakdawalla, PhD

Costs and Spillover Effects of Private Insurers' Coverage of Hepatitis C Treatment

Gigi A. Moreno, PhD; Karen Mulligan, PhD; Caroline Huber, MPH; Mark T. Linthicum, MPP; David Dreyfus, DBA; Timothy Juday, PhD; Steven E. Marx, PharmD; Yuri Sanchez Gonzalez, PhD; Ron Brookmeyer, PhD; and Darius N. Lakdawalla, PhD
Expanding private-payer coverage of hepatitis C treatment may yield significant long-term cost savings for private payers, reduced costs to Medicare, and increased social value.
This study adds to the growing evidence that earlier HCV treatment generates considerable value to patients and society, contributing to the ongoing debate about when to initiate HCV treatment, given its costs. Although treatment guidelines do not recommend limiting treatment by fibrosis stage, insurers must balance the increasing evidence for early treatment against their actuarial costs.30 Additionally, this study demonstrates the magnitude of the wedge between payer incentives today, and when patients infected with HCV age into Medicare in the future. Decision makers charged with allocating limited healthcare resources are faced with difficult tradeoffs between short-term costs and long-term benefits. Although this issue is salient in the treatment of HCV, it applies to numerous other clinical settings as well.
Our results present a challenge to policy makers regarding who should be responsible for HCV treatment coverage decisions. Although the socially optimal strategy is for private insurers to expand treatment coverage, this conflicts with their short-term financial incentives. A blunt solution would subsidize HCV treatments directly, since their long-term social benefits exceed the benefits internalized by private payers.
A more nuanced solution would allow private payers to capture the long-term benefits they create from expanded treatment, even if patients switch coverage. An insurer who treats a patient lowers the actuarial cost of covering that patient in the future, which could be rebated to the original insurer as a “handoff payment” if the patient were to switch coverage.40 Alternatively, an explicit credit could be granted to each payer that treats a patient.41 An example is the idea of “Healthcoins,” or a similar market-based tradable asset pegged at the value society derives from treatment (benefits of treatment minus costs).41 These and other policy options remain an open area of further research and discussion.
As in any modeling-based analysis, our approach has some limitations. Markov models are designed to capture cohort-level effects and therefore cannot forecast individual disease processes and outcomes.42,43 We assumed individuals belong to a single risk group to avoid double counting, but some overlap is likely to exist in reality. We also assumed no retreatment for individuals who initially failed treatment, but this limitation likely results in a small impact on cost estimates, since existing research indicates that the number of nonresponders is low.6,44-46
Although NHANES provides reliable population-level estimates, subpopulation estimates are less reliable due to small sample sizes. Additionally, due to NHANES’ self-reporting design, it is possible that stigmatized behaviors, such as sexual activities and intravenous drug use, are underreported, which would affect subpopulation estimates. However, NHANES-based estimates are similar to other estimates reported in the literature.47 Finally, NHANES also does not capture homeless and incarcerated populations, both of which have high HCV prevalence and limited treatment access.15,48
Lastly, our model was designed to examine spillover effects of private coverage policies to Medicare; thus, transitions between insurance types are not modeled, except for individuals aging into Medicare at 65. Spillovers to Medicaid and uninsured populations are limited in our model to the impact of reduced disease transmission. Incorporating insurance transitions could generate additional positive spillover effects from healthier individuals switching among Medicaid, private plans, and uninsured. Additionally, our model assumes uniform coverage among private insurers and does not capture variation in insurance coverage levels. We did not, therefore, study the effects of private insurers who offer different levels of coverage. Differences in coverage may be relevant in a competitive private market or one in which employers and beneficiaries vary in their demand for benefit generosity. Differences in benefit design and competition among insurers present valuable questions for further research.
Expanding HCV treatment coverage significantly benefits patients and society through a reduced disease burden; however, the optimal approach to paying for these treatments is less clear. As our results demonstrate, expanding private insurance coverage of HCV treatments reduces treatment costs and medical expenditures for Medicare over all time horizons. It also generates net savings for private insurers in the longer term and benefits to society in terms of QALYs. The misalignment between short-term treatment costs and long-term benefits that private payers face, however, may not promote socially optimal treatment strategies. Public policies may be required to realize the benefits of expanding HCV treatment coverage. 

Author Affiliations: Precision Health Economics (GAM, KM, CH, MTL), Los Angeles, CA; Arete Analytics (DD), Andover, MA; AbbVie, Inc (TJ, SEM, YSG), North Chicago, IL;  Department of Biostatistics, University of California (RB), Los Angeles, CA; Leonard D. Schaeffer Center for Health Policy & Economics, University of Southern California (DNL), Los Angeles, CA.

Source of Funding: Support for this research was provided by AbbVie, Inc.

Author Disclosures: Drs Juday, Marx, and Sanchez Gonzalez are employees and stockholders of Abbvie, Inc, which develops and markets treatments for hepatitis C virus. Drs Moreno and Mulligan, and Ms Huber and Mr Linthicum are employees of Precision Health Economics (PHE), a healthcare consultancy to life science firms. Dr Lakdawalla is the chief strategy officer and owns equity in PHE, and Drs Dreyfus and Brookmeyer are consultants for PHE.

Authorship Information: Concept and design (GAM, KM, DD, TJ, SEM, YSG, RB, DNL); acquisition of data (GAM, KM, CRH); analysis and interpretation of data (GAM, KM, CRH, MTL, DD, TJ, SEM, YSG, RB, DNL); drafting of the manuscript (GAM, KM, CRH, MTL, TJ, SEM, YSG); critical revision of the manuscript for important intellectual content (GAM, KM, CRH, MTL, DD, TJ, SEM, YSG, RB, DNL); statistical analysis (KM,DD, TJ); obtaining funding (TJ, YSG); administrative, technical, or logistic support (GAM, KM, MTL); and supervision (GAM, TJ, YSG, DNL).

Address correspondence to: Gigi A. Moreno, PhD, Precision Health Economics, 11100 Santa Monica Blvd, Ste 500, Los Angeles, CA 90025. E-mail:

1. Razavi H, ElKhoury AC, Elbasha E, et al. Chronic hepatitis C virus (HCV) disease burden and cost in the United States. Hepatology. 2013;57(6):2164-2170. doi: 10.1002/hep.26218.

2. Butt AA, Yan P, Lo Re V 3rd, et al; ERCHIVES (Electronically Retrieved Cohort of HCV Infected Veterans) Study Team. Liver fibrosis progression in hepatitis C virus infection after seroconversion. JAMA Intern Med. 2015;175(2):178-185. doi: 10.1001/jamainternmed.2014.6502.

3. Institute of Medicine (US) Committee on the Prevention and Control of Viral Hepatitis Infection; Colvin HM, Mitchell AE (eds). Hepatitis and Liver Cancer: A National Strategy for Prevention and Control of Hepatitis B and C. Washington, DC: National Academies Press; 2010.

4. Eckman MH, Talal AH, Gordon SC, Schiff E, Sherman KE. Cost-effectiveness of screening for chronic hepatitis C infection in the United States. Clin Infect Dis. 2013;56(10):1382-1393. doi: 10.1093/cid/cit069.

5. Moorman AC, Gordon SC, Rupp LB, et al; Chronic Hepatitis Cohort Study Investigators. Baseline characteristics and mortality among people in care for chronic viral hepatitis: the chronic hepatitis cohort study. Clin Infect Dis. 2013;56(1):40-50. doi: 10.1093/cid/cis815. 

6. Leidner AJ, Chesson HW, Xu F, Ward JW, Spradling PR, Holmberg SD. Cost-effectiveness of hepatitis C treatment for patients in early stages of liver disease. Hepatology. 2015;61(6):1860-1869. doi: 10.1002/hep.27736.

7. Van Nuys K, Brookmeyer R, Chou JW, Dreyfus D, Dieterich D, Goldman DP. Broad hepatitis C treatment scenarios return substantial health gains, but capacity is a concern. Health Aff (Millwood). 2015;34(10):1666-1674. doi: 10.1377/hlthaff.2014.1193.

8. Cunningham PJ. Few Americans switch employer health plans for better quality, lower costs [NIHCR research brief No. 12]. National Institute for Health Care Reform website. Published January 2013. Accessed April 8, 2015.

9. Original Medicare (Part A and B) eligibility and enrollment. CMS webite. Updated November 3, 2015. Accessed December 10, 2015.

10. Smith BD, Morgan RL, Beckett GA, et al; Centers for Disease Control and Prevention. Recommendations for the identification of chronic hepatitis C virus infection among persons born during 1945-1965. MMWR Recomm Rep. 2012;61(RR-4):1-32.

11. Davis GL, Alter MJ, El–Serag H, Poynard T, Jennings LW. Aging of hepatitis C virus (HCV)-infected persons in the United States: a multiple cohort model of HCV prevalence and disease progression. Gastroenterology. 2010;138(2):513-521, 521.e1-6. doi: 10.1053/j.gastro.2009.09.067.

12. Stepanova M, Kanwal F, El-Serag HB, Younossi ZM. Insurance status and treatment candidacy of hepatitis C patients: analysis of population-based data from the United States. Hepatology. 2011;53(3):737-745. doi: 10.1002/hep.24131.

13. Chernew M, Baicker K, Martin C. Spillovers in health care markets: implications for current law projections. CMS website. Published April 16, 2010. Accessed November 25, 2015.

14. Romley JA, Axeen S, Lakdawalla DN, Chernew ME, Bhattacharya J, Goldman DP. The relationship between commercial health care prices and Medicare spending and utilization. Health Serv Res. 2015;50(3):883-896. doi: 10.1111/1475-6773.12262.

15. Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey; Accessed May 25, 2015.

16. Manos MM, Shvachko VA, Murphy RC, Arduino JM, Shire NJ. Distribution of hepatitis C virus genotypes in a diverse US integrated health care population. J Med Virol. 2012;84(11):1744-1750. doi: 10.1002/jmv.23399.

17. Coffin PO, Reynolds A. Ending hepatitis C in the United States: the role of screening. Hepat Med. 2014;6:79-84. doi: 10.2147/HMER.S40940.

18. Henderson DK. Managing occupational risks for hepatitis C transmission in the health care setting. Clin Microbiol Rev. 2003;16(3):546-568.

19. Williams IT, Bell BP, Kuhnert W, Alter MJ. Incidence and transmission patterns of acute hepatitis C in the United States, 1982-2006. Arch Internal Med. 2011;171(3):242-248. doi: 10.1001/archinternmed.2010.511.

20. Hepatitis C FAQs for health professionals. CDC website. Updated March 11, 2016. Accessed November 5, 2015.

21. Hagan LM, Sulkowski MS, Schinazi RF. Cost analysis of sofosbuvir/ribavirin versus sofosbuvir/simeprevir for genotype 1 hepatitis C virus in interferon-ineligible/intolerant individuals. Hepatology. 2014;60(1):37-45. doi: 10.1002/hep.27151.

22. US Census Bureau. Annual estimates of the resident population by single year and sex for the United States: April 1, 2010 to July 1, 2014. 2014; Accessed April 6, 2015.

23. Denniston MM, Jiles RB, Drobeniuc J, et al. Chronic hepatitis C virus infection in the United States, National Health and Nutrition Examination Survey 2003 to 2010. Ann Intern Med. 2014;160(5):293-300. doi: 10.7326/M13-1133.

24. Monitoring selected national HIV prevention and care objectives by using HIV surveillance data—United States and 6 dependent areas—2011 [HIV Surveillance Supplemental Report]. CDC website. Published October 2013. Accessed January 16, 2015.

25. Yehia BR, Schranz AJ, Umscheid CA, Lo Re V 3rd. The treatment cascade for chronic hepatitis C virus infection in the United States: a systematic review and meta-analysis. PLoS One. 2014;9(7):e101554. doi: 10.1371/journal.pone.0101554.

26. Mathers BM, Degenhardt L, Bucello C, Lemon J, Wiessing L, Hickman M. Mortality among people who inject drugs: a systematic review and meta-analysis. Bull World Health Organ. 2013;91(2):102-123. doi: 10.2471/BLT.12.108282.

27. Whiteside YO, Selik R, An Q, et al. Comparison of rates of death having any death-certificate mention of heart, kidney, or liver disease among persons diagnosed with HIV infection with those in the general US population, 2009-2011. Open AIDS J. 2015;9:14-22. doi: 10.2174/1874613601509010014.

28. Gold MR, Siegel JE, Russell LB, Weinstein MC. Cost-Effectiveness in Health and Medicine: Report of the Panel on Cost-Effectiveness in Health and Medicine. New York: Oxford University Press; 1996.

29. Friedman SL, Bansal MB. Reversal of hepatic fibrosis—fact or fantasy? Hepatology. 2006;43(2, suppl 1):S82-S88.

30. AASLD IDSA HCV Guidance Panel. Hepatitis C guidance: AASLD-IDSA recommendations for testing, managing, and treating adults infected with hepatitis C virus. Hepatology. 2015;62(3):932-954. doi: 10.1002/hep.27950.

31. Ditah I, Al Bawardy B, Gonzalez HC, et al. Lack of health insurance limits the benefits of hepatitis C virus screening: insights from the National Health and Nutrition Examination Hepatitis C Follow-Up Study. Am J Gastroenterol. 2015;110(8):1126-1133. doi: 10.1038/ajg.2015.31.

32. McGowan CE, Fried MW. Barriers to hepatitis C treatment. Liver Int. 2012;32(suppl 1):151-156. doi: 10.1111/j.1478-3231.2011.02706.x.

33. Pharmacy clinical policy bulletins Aetna non-Medicare prescription drug plan: subject: hepatitis C. 2015. Aetna website. Accessed May 21, 2015.

34. Canary LA, Klevens RM, Holmberg SD. Limited access to new hepatitis C virus treatment under state Medicaid programs. Ann Intern Med. 2015;163(3):226-228. doi: 10.7326/M15-0320.

35. United American Medicare Part D. Prior Authorization Guidelines- Essential (PDP). 2015. Accessed September 30, 2015.

36. Clinical pharmacy programs [program number 2014 P 2023-4]. United Healthcare website. Published September 1, 2014. Accessed March 5, 2014.

37. Hirth RA, Chernew ME, Miller E, Fendrick AM, Weissert WG. Willingness to pay for a quality-adjusted life year: in search of a standard. Med Decis Making. 2000;20(3):332-342.

38. Neumann PJ, Cohen JT, Weinstein MC. Updating cost-effectiveness—the curious resilience of the $50,000-per-QALY threshold. N Engl J Med. 2014;371(9):796-797. doi: 10.1056/NEJMp1405158.

39. Younossi ZM, Stepanova M, Afdhal N, et al. Improvement of health-related quality of life and work productivity in chronic hepatitis C patients with early and advanced fibrosis treated with ledipasvir and sofosbuvir. J Hepatol. 2015;63(2):337-345. doi: 10.1016/j.jhep.2015.03.014.

40. Bhattacharya J, Chandra A, Chernew M, et al. Best of both worlds uniting universal coverage and personal choice in health care. American Enterprise Institute website. Published August 2013. Accessed November 25, 2015.

41. Basu A. Financing cures in the United States. Expert Rev Pharmacoecon Outcomes Res. 2015;15(1):1-4. doi: 10.1586/14737167.2015.990887.

42. Briggs MA, Sculpher M. An introduction to Markov modelling for economic evaluation. Pharmacoeconomics. 1998;13(4):397-409.

43. Amiri M, Kelishadi R. Comparison of models for predicting outcomes in patients with coronary artery disease focusing on microsimulation. Int J Prev Med. 2012;3(8):522-530.

44. Gutierrez JA, Lawitz EJ, Poordad F. Interferon-free, direct-acting antiviral therapy for chronic hepatitis C. J Viral Hepat. 2015;22(11):861-870. doi: 10.1111/jvh.12422.

45. Younossi ZM, Singer ME, Mir HM, Henry L, Hunt S. Impact of interferon free regimens on clinical and cost outcomes for chronic hepatitis C genotype 1 patients. J Hepatol. 2014;60(3):530-537. doi: 10.1016/j.jhep.2013.11.009.

46. Tice JA, Ollendorf DA, Pearson SD; Institute for Clinical and Economic Review. The comparative clinical effectiveness and value of simperevir and sofosbuvir in the treatment of chronic hepatitis C infection. California Technology Assessment Forum website. Published April 15, 2014. Accessed October 8, 2014.

47. Denniston MM, Klevens RM, McQuillan GM, Jiles RB. Awareness of infection, knowledge of hepatitis C, and medical follow-up among individuals testing positive for hepatitis C: National Health and Nutrition Examination Survey 2001-2008. Hepatology. 2012;55(6):1652-1661. doi: 10.1002/hep.25556.

48. Edlin BR, Eckhardt BJ, Shu MA, Holmberg SD, Swan T. Toward a more accurate estimate of the prevalence of hepatitis C in the United States. Hepatology. 2015;62(5):1353-1363. doi: 10.1002/hep.27978. 
Copyright AJMC 2006-2020 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
Welcome the the new and improved, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up