Currently Viewing:
The American Journal of Managed Care Special Issue: HCV
Real-World Outcomes of Ledipasvir/Sofosbuvir in Treatment-Naïve Patients With Hepatitis C
Zobair M. Younossi, MD, MPH, FACG, AGAF, FAASLD; Haesuk Park, PhD; Stuart C. Gordon, MD; John R. Ferguson; Aijaz Ahmed, MD; Douglas Dieterich, MD; and Sammy Saab, MD, MPH
Sofosbuvir Initial Therapy Abandonment and Manufacturer Coupons in a Commercially Insured Population
Taruja D. Karmarkar, MHS; Catherine I. Starner, PharmD; Yang Qiu, MS; Kirsten Tiberg, RPh; and Patrick P. Gleason, PharmD
Improving HCV Cure Rates in HIV-Coinfected Patients - A Real-World Perspective
Seetha Lakshmi, MD; Maria Alcaide, MD; Ana M. Palacio, MD, MPH; Mohammed Shaikhomer, MD; Abigail L. Alexander, MS; Genevieve Gill-Wiehl, BA; Aman Pandey, BS; Kunal Patel, BS; Dushyantha Jayaweera, MD; and Maria Del Pilar Hernandez, MD
Does Patient Cost Sharing for HCV Drugs Make Sense?
Darius N. Lakdawalla, PhD; Mark T. Linthicum, MPP; and Jacqueline Vanderpuye-Orgle, PhD
A Way Out of the Dismal Arithmetic of Hepatitis C Treatment
Jay Bhattacharya, MD, PhD, Center for Primary Care and Outcomes Research, Stanford University School of Medicine; Guest Editor-in-Chief for the HCV special issue of The American Journal of Managed
Currently Reading
Value of Expanding HCV Screening and Treatment Policies in the United States
Mark T. Linthicum, MPP; Yuri Sanchez Gonzalez, PhD; Karen Mulligan, PhD; Gigi A. Moreno, PhD; David Dreyfus, DBA; Timothy Juday, PhD; Steven E. Marx, PharmD; Darius N. Lakdawalla, PhD; Brian R. Edlin, MD; and Ron Brookmeyer, PhD
Costs and Spillover Effects of Private Insurers' Coverage of Hepatitis C Treatment
Gigi A. Moreno, PhD; Karen Mulligan, PhD; Caroline Huber, MPH; Mark T. Linthicum, MPP; David Dreyfus, DBA; Timothy Juday, PhD; Steven E. Marx, PharmD; Yuri Sanchez Gonzalez, PhD; Ron Brookmeyer, PhD; and Darius N. Lakdawalla, PhD
Coverage for Hepatitis C Drugs in Medicare Part D
Jeah Kyoungrae Jung, PhD; Roger Feldman, PhD; Chelim Cheong, PhD; Ping Du, MD, PhD; and Douglas Leslie, PhD

Value of Expanding HCV Screening and Treatment Policies in the United States

Mark T. Linthicum, MPP; Yuri Sanchez Gonzalez, PhD; Karen Mulligan, PhD; Gigi A. Moreno, PhD; David Dreyfus, DBA; Timothy Juday, PhD; Steven E. Marx, PharmD; Darius N. Lakdawalla, PhD; Brian R. Edlin, MD; and Ron Brookmeyer, PhD
Expanding screening for hepatitis C virus infection may generate substantial benefits for patients and society, but only when paired with expanded treatment policies.
Incremental Cost-Effectiveness
All screening strategies are highly cost-effective after 20 years when combined with treatment at F2 or earlier (Table 3). In these expanded treatment scenarios, Screen All exhibits the highest ICER under treatment at F2-F4, at $6747/QALY gained, and 4 of the 6 scenarios are cost-saving. Expanded screening is less cost-effective when treatment is restricted to F3-F4, however, with ICERs reaching $163,933/QALY for Physician Education.
 
Break-Even Analysis
Varying screening policy has little impact on the number of years required to break even (see Table 3). The accompanying treatment scenario has a much larger effect. For example, with treatment restricted to F3-F4, Screen All breaks even in 20 years—just slightly earlier than Physician Education (22 years). With expansion of treatment to either F2-F4 or F0-F4, all screening scenarios break even in 8 or 9 years.
 
Sensitivity Analyses
Sensitivity tests within screening/treatment combinations highlight 4 key drivers of uncertainty in our results: starting size of the total Other Adult population, QALY utility weights, discount rate, and economic value of QALYs. Combining the maximum and minimum values from these parameters’ ranges generates 16 permutations that allow us to approximate the upper and lower bounds on our results, given uncertainty in model parameters.
 
For scenarios with expanded treatment, net social value always remains positive after 20 years and all scenarios remain cost-effective or cost saving. For screening expansion under treatment at F3-F4, however, cumulative social value ranges from –$27 billion, at the minimum, to $69 billion at the maximum (both under the Screen All scenario); cost-effectiveness under treatment at F3-F4 ranges from $114,819 to $206,992/QALY gained. This result highlights the interdependence between screening and treatment policies. For detailed results and additional sensitivity analyses, see the eAppendix.
 
DISCUSSION
Both expanded screening and expanded treatment are valuable. However, they are each more valuable when used together. Screening is more effective when diagnosed patients are treated earlier, and treatment expansions generate greater benefits when more patients are diagnosed. Conversely, increasing screening without expanding treatment leads to minimal gains or net losses to society. Newly diagnosed patients derive less benefit and some may even be harmed by the knowledge of their HCV infection if they remain untreated.
 
For example, the strategy of expanding both screening and treatment breaks even after 8 to 9 years, but expanding screening alone takes 20 to 22 years to break even. The strong complementarity between screening and treatment policies remains over a wide range of cost estimates. Even under the most optimistic screening scenario sensitivities, expanding screening alone takes a minimum of 16 years to break even. One might see greater returns from screening alone, if diagnosed and untreated patients reduce risky transmission behaviors. We do not investigate this possibility, which should be considered in future research.
 
Our findings suggest that screening expansions are robustly cost-effective and socially valuable, but only when paired with expanded treatment. This is consistent with previous research suggesting that screening for HCV is cost-effective when paired with treatment, even when treating with more expensive DAAs; Rein et al (2012), for example, reported an ICER of $35,700/QALY saved by birth-cohort screening policies focused on the baby boomer population.7 A more recent study of novel DAAs suggest ICERs ranging from $24,921 to $72,169/QALY saved.37 At the 10-year time horizon, our results suggest similar levels of cost-effectiveness (see eAppendix).
 
The pursuit of both expanded screening and treatment for HCV is consistent with current trends in HIV management, where public health agencies and experts have increasingly supported a “test and treat” strategy, as the value of aggressive screening and early treatment for patients with HIV has become clear.38,39 Existing research, including this study, suggests that such a policy may be beneficial in HCV management as well.11-13
 
Policy makers and payers in a fiscally constrained environment face a conundrum highlighted by our results. Expanding screening and treatment pays off in as few as 8 years, but the up-front costs are high in the scenarios examined. Because of patient turnover, private payers and state Medicaid systems may not retain patients long enough to directly benefit from their investments in HCV treatment. Furthermore, whereas the costs of screening and treatment are borne by insurers and other payers, only a small portion of the benefits accrue directly to them (in the form of reduced future medical costs).40 The vast majority of the benefits from treatment accrue to patients and society in longer lives and higher quality of life,12,40 potentially resulting in a “race to the bottom” in which public and private payers make decisions based on short-term costs alone.
 


 
Copyright AJMC 2006-2019 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
x
Welcome the the new and improved AJMC.com, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up