Currently Viewing:
The American Journal of Managed Care November 2017
Using the 4 Pillars to Increase Vaccination Among High-Risk Adults: Who Benefits?
Mary Patricia Nowalk, PhD, RD; Krissy K. Moehling, MPH; Song Zhang, MS; Jonathan M. Raviotta, MPH; Richard K. Zimmerman, MD, MPH; and Chyongchiou J. Lin, PhD
The Influence of Provider Characteristics and Market Forces on Response to Financial Incentives
Brock O’Neil, MD; Mark Tyson, MD; Amy J. Graves, SM, MPH; Daniel A. Barocas, MD, MPH; Sam S. Chang, MD, MBA; David F. Penson, MD, MPH; and Matthew J. Resnick, MD, MPH
Patients' Perspectives of Care Management: A Qualitative Study
Ann S. O’Malley, MD, MPH; Deborah Peikes, PhD, MPA; Claire Wilson, PhD; Rachel Gaddes, MPH; Victoria Peebles, MSW; Timothy J. Day, MSPH; and Janel Jin, MSPH
Impact of Health Reform on Young Adult Prescription Medication Utilization
Amy Pakyz, PharmD, PhD, MS; Hui Wang, PhD; and Peter Cunningham, PhD
Reframing the Unaffordability Debate: Patient Responsibility for Physician Care
Katherine Hempstead, PhD; Josh Gray, MBA; and Anna Zink, BA
Electronic Reminder's Role in Promoting Human Papillomavirus Vaccine Use
Jaeyong Bae, PhD; Eric W. Ford, PhD, MPH; Shannon Wu, BA; and Timothy Huerta, PhD, MS
Improving Antibiotic Stewardship: A Stepped-Wedge Cluster Randomized Trial
Adam L. Sharp, MD, MS; Yi R. Hu, MS; Ernest Shen, PhD; Richard Chen, MD; Ryan P. Radecki, MD, MS; Michael H. Kanter, MD; and Michael K. Gould, MD, MS
Currently Reading
Changes in Cardiovascular Care Provision After the Affordable Care Act
Joseph A. Ladapo, MD, PhD; and Dave A. Chokshi, MD, MSc
Validation of a Claims-Based Algorithm to Characterize Episodes of Care
Chad Ellimoottil, MD, MS; John D. Syrjamaki, MPH; Benedict Voit, MBA; Vinay Guduguntla, BS; David C. Miller, MD, MPH; and James M. Dupree, MD, MPH

Changes in Cardiovascular Care Provision After the Affordable Care Act

Joseph A. Ladapo, MD, PhD; and Dave A. Chokshi, MD, MSc
The authors evaluated whether the 2010 Affordable Care Act was associated with changes in physicians’ provision of preventive cardiovascular services.
To further account for patient and clinical characteristics that may be associated with physicians’ use of preventive cardiovascular services, we extracted information on patient age, sex, race/ethnicity, US Census region (Northeast, Midwest, South, and West), urban or rural setting, and important comorbidities (identified using visit diagnoses and reasons for visit) known to increase the risk of adverse cardiovascular events (hypertension, coronary artery disease, diabetes, chronic kidney disease, and chronic obstructive pulmonary disease).18 To account for a possible increase in the complexity of self-pay/uninsured patients after the ACA took effect, we adjusted for a measure of continuity of care, as defined by whether a patient was an established patient or a new patient in the physician’s practice.19,20

Statistical Analysis

All analyses accounted for the complex sampling design of the NAMCS and NHAMCS.21 We estimated simple and multivariate DID logistic regressions and estimated the predicted probability of a preventive cardiovascular service (as a dummy variable) to examine the impact of the ACA on the physicians’ care patterns (see eAppendix [eAppendix available at Our models were generally implemented as: 

Preventive cardiovascular service = β0 + β1 Target population visit  + β2 Post ACA + β3 Target population visit × Post ACA 

where Preventive cardiovascular service, Target population visit, and Post ACA are indicator variables and Post ACA specifically captures the period from October 1, 2010, to December 31, 2013.

The coefficient on the interaction term between Target population visit and Post ACA estimates the impact of interest. Specifically, this coefficient captures the differences among preventive cardiovascular service rates between target population visits and control population visits in the time period before the ACA’s implementation and compares them with the differences after the policy change; the coefficient therefore represents the independent relationship between the ACA and physicians’ preventive cardiovascular service rates. We tested for differences in pre-2010 testing trends among target population visits and control population visits by estimating multivariate logistic regressions limited to the period between January 1, 2006, and September 30, 2010, and including an interaction variable between time and our indicator for target population visits. The coefficient for this variable was not significant for any of the preventive cardiovascular services we examined. Multivariate logistic regression models also adjusted for patients’ clinical risk factors and demographic characteristics, insurance, geographic region, and urban/rural setting. Analyses were performed using Stata version 14 (StataCorp LLC; College Station, Texas).

Sensitivity Analysis

Because of the concern that self-pay/uninsured patients may be sicker (or healthier overall; see Decker et al,22 for example) in the post-ACA period than in the period before the law took effect23 and that such differences could bias our results, we assessed changes in the overall cardiovascular risk of patients with private insurance versus patients who are self-pay/uninsured. Specifically, we computed the atherosclerotic cardiovascular disease (ASCVD) scores for privately insured patients and self-pay/uninsured patients from 2006 to 2013 and constructed linear regression models to test for an interaction between the post-ACA period and self-pay/uninsured status.24 Lipid levels and blood pressure were not uniformly available in our data, so we imputed these values with age- and sex-adjusted population values in the United States (see eAppendix Table 1).25,26 These models included covariates similar to those of our primary models, but patients with CHD were omitted (3.9% of overall population) because the ASCVD is only applicable to patients without CHD. We did not find evidence of an interaction (P = .45 for interaction), indicating that the overall cardiovascular risk level of the self-pay/uninsured cohort was not significantly different over time. 


Annual Number and Prevalence of Preventive Cardiovascular Services 

We present overall trends in physicians’ use of preventive cardiovascular services during clinic visits for diabetes screening, obesity therapy, hypertension screening, cholesterol screening, aspirin therapy, tobacco use, and smoking cessation treatment in Figure 1. Characteristics of the population are reported in eAppendix Table 2. The rates of most preventive cardiovascular services tended to be flat or to trend modestly upward for physician visits with target and control patients, although rates of obesity treatment and smoking cessation advice/counseling tended to trend downward.

Changes in Preventive Cardiovascular Services Post ACA

Using our DID regression models, we found that in the period after the ACA’s provisions took effect for preventive cardiovascular services, there was no significant change in the use of obesity treatment (47.2% in 2006-2010 [third quarter] to 40.3% in 2010 [fourth quarter]-2013; DID, –1.3 per 100 visits; 95% CI, –21.9 to 19.4), cholesterol screening in men (10.3% in 2006-2010 to 8.9% in 2010-2013; DID, +0.4 per 100 visits; 95% CI, –2.2 to 3.0), cholesterol screening in women (8.4% in 2006-2010 to 7.9% in 2010-2013; DID, +0.4 per 100 visits; 95% CI, –1.3 to 2.0), aspirin therapy in women (8.8% in 2006-2010 to 10.0% in 2010-2013; DID, +0.4 per 100 visits; 95% CI, –1.3 to 2.0), tobacco use screening in pregnant women (67.7% in 2006-2010 to 70.3% in 2010-2013; DID, +2.5 per 100 visits; 95% CI, –5.4 to 10.5), smoking cessation advice in pregnant smokers (17.6% in 2006-2010 to 13.3% in 2010-2013; DID, –7.2 per 100 visits; 95% CI, –17.7 to 3.2), or smoking cessation advice in adult smokers (23.0% in 2006-2010 to 17.8% in 2010-2013; DID, +0.8 per 100 visits; 95% CI, –6.2 to 7.7) (Table). 

The ACA’s 2010 provisions were associated with an increase in the use of diabetes screening (3.9% in 2006-2010 to 7.6% in 2010-2013; DID, +3.5 per 100 visits; 95% CI, 1.1-5.9), tobacco use screening in adults (64.4% in 2006-2010 to 74.5% in 2010-2013; DID, +11.6 per 100 visits; 95% CI, 4.8-18.3), aspirin therapy in men (11.1% in 2006-2010 to 13.5% in 2010-2013; DID, +2.9 per 100 visits; 95% CI, 1.1-4.6), and hypertension screening (73.2% in 2006-2010 to 76.4% in 2010-2013; DID, +9.9 per 100 visits; 95% CI, 2.8-16.9).

We performed sensitivity analyses for cholesterol screening and aspirin therapy that used a self-pay/uninsured cohort of similar age and sex to address any confounding potentially related to age differences in our primary analyses. This analysis was not possible for aspirin therapy in men because pre-ACA trends differed between these 2 groups. These sensitivity analyses yielded similar results to our main analyses, showing no significant change in cholesterol screening in men (DID, +2.2 per 100 visits; 95% CI, –1.9 to 6.2), cholesterol screening in women (DID, +0.4 per 100 visits; 95% CI, –4.0 to 4.7), or aspirin therapy in women (DID, +1.7 per 100 visits; 95% CI, –0.4 to 3.8).

Using the Benjamini-Hochberg procedure to adjust for multiple testing, where P values are sorted in ascending order and critical limits are estimated for each P value based on its rank, total number of statistical tests, and false discovery rate (0.05), we found that changes in tobacco use, hypertension, and diabetes screening remained significant, whereas the change in aspirin therapy among men was no longer significant.


Our results indicate that physicians’ provision of cardiovascular preventive care increased for USPSTF-recommended services following enactment of the ACA, based primarily on findings in patients with employer-sponsored health plans. Out of 11 services examined, 4 (diabetes screening, tobacco use screening, aspirin therapy among men, and hypertension screening) were found to be used more frequently by physicians. Our findings also indicate that overall, physician visits for preventive cardiovascular care were increasing prior to the ACA—and this trend continued following its passage. The sex disparity for aspirin use underscores wider concerns about disparities in cardiovascular care among women versus men.27

To our knowledge, this study is the first to analyze changes in use of cardiovascular preventive care after the ACA using physician visit–level data. The physician focus in our analysis allows a more direct assessment of clinical decision making in response to policy changes encoded in the ACA, such as elimination of marginal cost sharing for USPSTF-recommended preventive services. 

Comparing our results with those in prior studies using patient-level data (eg, from the Medical Expenditure Panel Survey), we found similarly mixed, although generally modest, effects on uptake of USPSTF-recommended preventive services after the ACA.28-30 This may reflect the limited consequences that eliminating patient cost sharing has on physician decision making. In March 2014, only about 43% of the population reported awareness that the ACA eliminated out-of-pocket expenses for preventive services.31 The fact that overall physician visits for preventive cardiovascular services increased during the timeframe studied (2006-2013) may mean that other factors were more important in influencing physician uptake. For example, a growing emphasis on cardiovascular prevention through insurance payer policies and professional society guidelines may have been more significant than ACA provisions. 

With respect to the increase in certain preventive services (diabetes screening, tobacco use screening, aspirin therapy among men, and hypertension screening), it is difficult to pinpoint the mechanism of effect, particularly because they are services that could be delivered within the context of a routine primary care visit. Patients may not have experienced cost sharing for these services even before the ACA—other than their co-payment for the office visit itself, which would not be affected by the ACA preventive services provisions. The causes of these temporal trends require further investigation with more granular data on cost sharing at the visit level. 

Copyright AJMC 2006-2018 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
Welcome the the new and improved, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up

Sign In

Not a member? Sign up now!