Currently Viewing:
The American Journal of Managed Care January 2018
Measuring Overuse With Electronic Health Records Data
Thomas Isaac, MD, MBA, MPH; Meredith B. Rosenthal, PhD; Carrie H. Colla, PhD; Nancy E. Morden, MD, MPH; Alexander J. Mainor, JD, MPH; Zhonghe Li, MS; Kevin H. Nguyen, MS; Elizabeth A. Kinsella, BA; and Thomas D. Sequist, MD, MPH
The Health Information Technology Special Issue: Has IT Become a Mandatory Part of Health and Healthcare?
Jacob Reider, MD
Bridging the Digital Divide: Mobile Access to Personal Health Records Among Patients With Diabetes
Ilana Graetz, PhD; Jie Huang, PhD; Richard J. Brand, PhD; John Hsu, MD, MBA, MSCE; Cyrus K. Yamin, MD; and Mary E. Reed, DrPH
Electronic Health Record "Super-Users" and "Under-Users" in Ambulatory Care Practices
Juliet Rumball-Smith, MBChB, PhD; Paul Shekelle, MD, PhD; and Cheryl L. Damberg, PhD
Currently Reading
Electronic Sharing of Diagnostic Information and Patient Outcomes
Darwyyn Deyo, PhD; Amir Khaliq, PhD; David Mitchell, PhD; and Danny R. Hughes, PhD
A Cost-Effectiveness Analysis of Cardiology eConsults for Medicaid Patients
Daren Anderson, MD; Victor Villagra, MD; Emil N. Coman, PhD; Ianita Zlateva, MPH; Alex Hutchinson, MBA; Jose Villagra, BS; and J. Nwando Olayiwola, MD, MPH
Electronic Health Record Problem Lists: Accurate Enough for Risk Adjustment?
Timothy J. Daskivich, MD, MSHPM; Garen Abedi, MD, MS; Sherrie H. Kaplan, PhD, MPH; Douglas Skarecky, BS; Thomas Ahlering, MD; Brennan Spiegel, MD, MSHS; Mark S. Litwin, MD, MPH; and Sheldon Greenfield, MD
Racial/Ethnic Variation in Devices Used to Access Patient Portals
Eva Chang, PhD, MPH; Katherine Blondon, MD, PhD; Courtney R. Lyles, PhD; Luesa Jordan, BA; and James D. Ralston, MD, MPH
Hospitalized Patients' and Family Members' Preferences for Real-Time, Transparent Access to Their Hospital Records
Michael J. Waxman, MD, MPH; Kurt Lozier, MBA; Lana Vasiljevic, MS; Kira Novakofski, PhD; James Desemone, MD; John O'Kane, RRT-NPS, MBA; Elizabeth M. Dufort, MD; David Wood, MBA; Ashar Ata, MBBS, PhD; Louis Filhour, PhD, RN; & Richard J. Blinkhorn Jr, MD

Electronic Sharing of Diagnostic Information and Patient Outcomes

Darwyyn Deyo, PhD; Amir Khaliq, PhD; David Mitchell, PhD; and Danny R. Hughes, PhD
A study evaluating the association between hospital sharing of electronic health record diagnostic information and hospital quality using Hospital Compare scores.
30-Day Patient Mortality. Hospitals sharing radiology reports through EHR systems with hospitals within their system were associated with significantly lower mortality scores for pneumonia (–0.22; P <.01). Conversely, hospitals sharing radiology reports through their EHRs with hospitals outside their system were associated with significantly higher HF mortality scores (0.26; P <.01). Hospitals sharing radiology reports through their EHRs with physicians within their system were associated with significantly lower mortality scores for pneumonia (0.24; P <.05). Sharing radiology reports with physicians, whether within or outside their system, was not associated with significant differences in HF mortality. Hospitals sharing radiology reports with either external hospitals or external physicians were not associated with significant differences in 30-day mortality for pneumonia.

Sharing laboratory results through EHRs with other hospitals in their system was associated with significant reductions in HF (–0.19; P <.01) and pneumonia (–0.24; P <.01) mortality scores, whereas sharing with hospitals outside their system was associated with higher scores for HF (0.26; P <.01). Likewise, hospitals sharing laboratory results through their EHRs with physicians within their system were associated with significantly lower pneumonia mortality scores (–0.24; P <.05). 

30-Day Readmission. Hospitals sharing radiology reports through their EHRs with physicians outside their system were associated with significant reductions in 30-day readmission scores for patients with HF (–0.15; P <.05), as were those that shared laboratory results with physicians outside their system for these patients (–0.19; P <.05). Sharing radiology reports with hospitals was not associated with significant differences in HF readmissions. Sharing laboratory results with physicians within their system was associated with lower pneumonia readmission scores (–0.16; P <.05).


Our results suggest that hospitals that share diagnostic data through EHRs with other providers in their system are associated with better patient outcomes. Hospitals sharing diagnostic data through their EHRs with other hospitals and physicians within their system were associated with significant reductions in 30-day patient mortality scores. In contrast, electronic sharing of diagnostic data with hospitals outside their system was significantly associated with higher patient mortality scores for HF. It is possible that hospitals within a system share EHR data more effectively due to team dynamics.22 Further, as hospitals in different systems may have different EHR systems, there may be unique difficulties with sharing data across systems.9 Sharing of some diagnostic data, such as radiology reports, may also be limited in that EHR records often do not contain the radiology images, causing a mistake made before the data are entered into an EHR system to be transmitted across systems that cannot validate the original information. This may partially account for the differential between sharing with providers within and outside of systems because physicians within the system may be able to access the source images through other means when necessary. Hospitals that solve the communication challenges associated with EHR data may be able to significantly reduce patient readmissions and mortality.

Overall, fewer hospitals shared data with hospitals outside their system, which may reflect the concerns about communicating across EHR systems: 72% of hospitals shared radiology reports with hospitals within their system compared with 36% that shared radiology reports with hospitals outside their system, with similar percentages for laboratory results. For both types of diagnostic data, we found that more hospitals shared data with physicians within their own system than with physicians outside their system. If hospital sharing is limited by communication or compatibility among different EHR systems, the ability of EHRs to improve patient outcomes or access to care may be limited in the long run.

Sharing diagnostic data through hospital EHRs with physicians was found to be significantly associated with lower HF readmissions. These results may be partially driven by overall lower readmission rates of patients with pneumonia relative to HF23 that may provide more opportunities for shared diagnostic data to influence care. Others have indicated that physicians may have more influence over readmissions than mortality.24 Thus, readmission reductions from sharing EHR diagnostic data with physicians may also reflect how EHR data can increase physician productivity.25-27


Like all studies, ours has limitations. First, hospitals face significant penalties for what CMS determines to be “excessive” mortality and readmission rates.28 It is therefore possible that HC and sharing EHR diagnostic data simultaneously improve patient outcomes. Hospitals may also be cherry-picking patients to influence their HC scores for hospital-acquired conditions.29 The HC scores may therefore provide a representative but overly positive sample of hospital rates for 30-day patient mortality and readmissions. It is also possible that hospital culture or other factors not captured in the data could influence the sharing and use of other hospitals’ EHR data. Given the evolution of EHR interoperability and shifting incentives by payers since these study data were collected, these findings are best interpreted as a baseline association between EHR sharing and HC outcomes.30,31 Future work is needed to assess whether these associations have changed with the evolution of EHR systems’ interoperability and usage.32 Hospitals removed from the study sample for missing values in the AHA IT Supplement were found to be significantly smaller, more rural, and less likely to be networked or academic, which could influence the generalizability of the findings. Finally, these results are associations and further research is required to determine whether the effects described are causal.


Of high policy interest is the overall low rate at which hospitals share diagnostic data through their EHRs with out-of-system hospitals and physicians. EHR data sharing has the largest potential for benefit when it accurately informs providers on patient conditions and avoids duplicative medical utilization. Our study found some evidence that when hospitals do share EHR data with hospitals outside their system, patient mortality has the potential to increase. Therefore, although there may be benefits to sharing EHR data, it may be that hospitals are not yet able to effectively use EHR data from other hospitals as well as would be desired. Thus, the best approach for increasing patient outcomes through better provider communication of diagnostic information may not be simply expanding the degree of EHR data sharing among providers, but rather developing common standards when using different EHR systems to ensure that providers can share diagnostic information in ways that are easy for other providers to access and accurately interpret. 


Dr Mitchell performed this work while serving as Visiting Research Fellow at the Harvey L. Neiman Health Policy Institute.

Author Affiliations: Department of Economics, San Jose State University (DD), San Jose, CA; Harvey L. Neiman Health Policy Institute (DD, DRH), Reston, VA; Department of Health Administration and Policy, University of Oklahoma Health Sciences Center (AK), Oklahoma City, OK; Department of Economics, Finance, and Insurance & Risk Management, University of Central Arkansas (DM), Conway, AR; School of Economics, Georgia Institute of Technology (DRH), Atlanta, GA.

Source of Funding: None.

Author Disclosures: The authors report no relationship or financial interest with any entity that would pose a conflict of interest with the subject matter of this article. 

Authorship Information: Concept and design (DD, AK, DM, DRH); acquisition of data (AK, DRH); analysis and interpretation of data (DD, DRH); drafting of the manuscript (DD, DRH); critical revision of the manuscript for important intellectual content (DD, AK, DM, DRH); statistical analysis (DD, DRH); administrative, technical, or logistic support (DM, DRH); and supervision (DRH). 

Address Correspondence to: Darwyyn Deyo, PhD, Harvey L. Neiman Health Policy Institute, 1891 Preston White Dr, Reston, VA 20191. Email:

1. Solet DJ, Norvell JM, Rutan GH, Frankel RM. Lost in translation: challenges and opportunities in physician-to-physician communication during patient handoffs. Acad Med. 2005;80(12):1094-1099. 

2. Jones SS, Adams JL, Schneider EC, Ringel JS, McGlynn EA. Electronic health record adoption and quality improvement in US hospitals. Am J Manag Care. 2010;16(12 suppl HIT):SP64-SP71. 

3. Wayne JD, Tyagi R, Reinhardt G, et al. Simple standardized patient handoff system that increases accuracy and completeness. J Surg Educ. 2008;65(6):476-485. doi: 10.1016/j.jsurg.2008.06.011.

4. Encinosa WE, Bae J. Health information technology and its effects on hospital costs, outcomes, and patient safety. Inquiry. 2011-2012;48(4):288-303. doi: 10.5034/inquiryjrnl_48.04.02. 

5. Graber ML, Siegal D, Riah H, Johnston D, Kenyon K. Electronic health record–related events in medical malpractice claims [published online November 6, 2015]. J Patient Saf. doi: 10.1097/PTS.0000000000000240.

6. Bowman S. Impact of electronic health record systems on information integrity: quality and safety implications. Perspect Health Inf Manag. 2013;10(Fall):1-19. 

7. Allen A. Electronic record errors growing issue in lawsuits. POLITICO. May 4, 2015. Accessed July 21, 2017.

8. Larson DB, Froehle CM, Johnson ND, Towbin AJ. Communication in diagnostic radiology: meeting the challenges of complexity. AJR Am J Roentgenol. 2014;203(5):957-964. doi: 10.2214/AJR.14.12949.

9. Mueller SK, Yoon C, Schnipper JL. Association of a web-based handoff tool with rates of medical errors. JAMA Intern Med. 2016;176(9):1400-1402. doi: 10.1001/jamainternmed.2016.4258.

10. Metzger J, Welebob E, Bates DW, Lipsitz S, Classen DC. Mixed results in the safety performance of computerized physician order entry. Health Aff (Millwood). 2010;29(4):655-663. doi: 10.1377/hlthaff.2010.0160.

11. Spetz J, Burgess JF, Phibbs CS. The effect of health information technology implementation in Veterans Health Administration hospitals on patient outcomes. Healthc (Amst). 2014;2(1):40-47. doi: 10.1016/j.hjdsi.2013.12.009.

12. Hanchate AD, Ash AS, Borzecki A, et al. How pooling fragmented healthcare encounter data affects hospital profiling. Am J Manag Care. 2015;21(2):129-138.

13. Chan KS, Kharrazi H, Parikh MA, Ford EW. Assessing electronic health record implementation challenges using item response theory. Am J Manag Care. 2016;22(12):e409-e415.

14. Wang DE, Tsugawa Y, Figueroa JF, Jha AK. Association between the Centers for Medicare and Medicaid Services hospital star rating and patient outcomes. JAMA Intern Med. 2016;176(6):848-850. doi: 10.1001/jamainternmed.2016.0784.

15. Werner RM, Bradlow ET. Relationship between Medicare’s Hospital Compare performance measures and mortality rates. JAMA. 2006;296(22):2694-2702. doi: 10.1001/jama.296.22.2694.

16. Jha AK, Orav EJ, Li Z, Epstein AM. The inverse relationship between mortality rates and performance in the Hospital Quality Alliance measures. Health Aff (Millwood). 2007;26(4):1104-1110. doi: 10.1377/hlthaff.26.4.1104.

17. Khaliq AA, Deyo D, Duszak R Jr. The impact of hospital characteristics on the availability of radiology services at critical access hospitals. J Am Coll Radiol. 2015;12(12 pt B):1351-1356. doi: 10.1016/j.jacr.2015.09.008.

18. Fierer J. Medicare’s Hospital Compare performance measures and mortality rates. JAMA. 2007;297(13):1430-1432. doi: 10.1001/jama.297.13.1430-a.

19. Unruh L, Hofler R. Predictors of gaps in patient safety and quality in U.S. hospitals. Health Serv Res. 2016;51(6):2258-2281. doi: 10.1111/1475-6773.12468.

20. 2013 measures updates and specifications: acute myocardial infarction, heart failure, and pneumonia 30-day risk-standardized mortality measure. CMS website.
06-13-2013.pdf. Published March 2013. Accessed July 21, 2017.

21. CMS. 2013 measures updates and specifications report: hospital-level 30-day risk-standardized
readmission measures for acute myocardial infarction, heart failure, and pneumonia. CMS website. Published March 2013. Accessed July 21, 2017. 

22. Graetz I, Huang J, Brand R, et al. The impact of electronic health records and teamwork on diabetes care quality. Am J Manag Care. 2015;21(12):878-884.

23. Dharmarajan K, Hsieh AF, Lin Z, et al. Diagnoses and timing of 30-day readmissions after hospitalization for heart failure, acute myocardial infarction, or pneumonia. JAMA. 2013;309(4):355-363. doi: 10.1001/jama.2012.216476.

24. Lammers EJ, McLaughlin CG, Barna M. Physician EHR adoption and potentially preventable hospital admissions among Medicare beneficiaries: panel data evidence, 2010-2013. Health Serv Res. 2016;51(6):2056-2075. doi: 10.1111/1475-6773.12586.

25. Adler-Milstein J, Huckman RS. The impact of electronic health record use on physician productivity. Am J Manag Care. 2013;19(11 spec no. 10):SP345-SP352.

26. Furukawa MF. Electronic medical records and efficiency and productivity during office visits. Am J Manag Care. 2011;17(4):296-303.

27. Dombrowski W, Clay B, O’Brien JD. Electronic health records quantify previously existing phenomenon—physicians spend hours coordinating care. JAMA Intern Med. 2016;176(8):1234-1235. doi: 10.1001/jamainternmed.2016.3889.

28. Whitman E. Hospitals face record penalties as CMS expands criteria for readmissions fines. Modern Healthcare website. Published August 3, 2016. Accessed July 21, 2017.

29. Rajaram R, Chung JW, Kinnier CV, et al. Hospital characteristics associated with penalties in the Centers for Medicare & Medicaid Services Hospital-Acquired Condition Reduction Program. JAMA. 2015;314(4):375. doi: 10.1001/jama.2015.8609.

30. Adams KT, Howe JL, Fong A, et al. An analysis of patient safety incident reports associated with electronic health record interoperability. Appl Clin Inform. 2017;8(2):593-602. doi: 10.4338/ACI-2017-01-RA-0014.

31. Sittig DF, Wright A, Ash J, Singh H. New unintended adverse consequences of electronic health records. Yearb Med Inform. 2016;(1):7-12. doi: 10.15265/IY-2016-023.

32. Electronic health records (EHR) incentive programs. CMS website. Published 2017. Accessed September 29, 2017.
Copyright AJMC 2006-2020 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
Welcome the the new and improved, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up