Currently Viewing:
The American Journal of Managed Care May 2018
Impact of Emergency Physician–Provided Patient Education About Alternative Care Venues
Pankaj B. Patel, MD; David R. Vinson, MD; Marla N. Gardner, BA; David A. Wulf, BS; Patricia Kipnis, PhD; Vincent Liu, MD, MS; and Gabriel J. Escobar, MD
Monitoring the Hepatitis C Care Cascade Using Administrative Claims Data
Cheryl Isenhour, DVM, MPH; Susan Hariri, PhD; and Claudia Vellozzi, MD, MPH
Delivery of Acute Unscheduled Healthcare: Who Should Judge Whether a Visit Is Appropriate (or Not)?
Adam Sharp, MD, MSc, and A. Mark Fendrick, MD
Impact of Formulary Restrictions on Medication Intensification in Diabetes Treatment
Bruce C. Stuart, PhD; Julia F. Slejko, PhD; Juan-David Rueda, MD; Catherine E. Cooke, PharmD; Xian Shen, PhD; Pamela Roberto, PhD; Michael Ciarametaro, MBA; and Robert Dubois, MD
Characteristics and Medication Use of Veterans in Medicare Advantage Plans
Talar W. Markossian, PhD, MPH; Katie J. Suda, PharmD, MS; Lauren Abderhalden, MS; Zhiping Huo, MS; Bridget M. Smith, PhD; and Kevin T. Stroupe, PhD
Rural Hospital Transitional Care Program Reduces Medicare Spending
Keith Kranker, PhD; Linda M. Barterian, MPP; Rumin Sarwar, MS; G. Greg Peterson, PhD; Boyd Gilman, PhD; Laura Blue, PhD; Kate Allison Stewart, PhD; Sheila D. Hoag, MA; Timothy J. Day, MSHP; and Lorenzo Moreno, PhD
Understanding Factors Associated With Readmission Disparities Among Delta Region, Delta State, and Other Hospitals
Hsueh-Fen Chen, PhD; Adrienne Nevola, MPH; Tommy M. Bird, PhD; Saleema A. Karim, PhD; Michael E. Morris, PhD; Fei Wan, PhD; and J. Mick Tilford, PhD
Changes in Specialty Care Use and Leakage in Medicare Accountable Care Organizations
Michael L. Barnett, MD, MS, and J. Michael McWilliams, MD, PhD
Currently Reading
Increasing Hepatitis C Screening in a Large Integrated Health System: Science and Policy in Concert
Carla V. Rodriguez, PhD; Kevin B. Rubenstein, MS; Benjamin Linas, MD; Haihong Hu, MS; and Michael Horberg, MD
Introduction of Cost Display Reduces Laboratory Test Utilization
Kim Ekblom, MD, PhD, and Annika Petersson, MSc, PhD

Increasing Hepatitis C Screening in a Large Integrated Health System: Science and Policy in Concert

Carla V. Rodriguez, PhD; Kevin B. Rubenstein, MS; Benjamin Linas, MD; Haihong Hu, MS; and Michael Horberg, MD
The success of recommendations to improve screening often rests on the availability of efficacious therapies, coverage policies, and other factors that enable and justify screening.
RESULTS

We observed 665,339 patients over time for an average of 33 months. Figure 1 describes the flow of patients through the study. The cohort was diverse; 37% of patients were Black and 57% were female. On average, patients resided in areas where median household income was approximately $84,000/year (Table 1).

HCV Antibody Screening

Screening rates increased from 23.6 per 1000 person-years in 2004 to 70.8 in 2014 (Figure 2). The screening rate increased by 29% (<.01) from 2013 to 2014 (after June 2013 interventions). In comparison, the screening rate increased by 4% (P <.01) from 2012 to 2013 (after the CDC recommendations). In total, 18.6% of all adult patients (17% of the birth cohort) were ever screened for HCV. The youngest patients were screened at the highest rate, followed by the birth cohort; those born before 1945 had the lowest rate of screening (Figure 3). However, the increase since the 2013 interventions was 1.2 (95% CI, 1.17-1.24) times greater in the birth cohort compared with those not in the birth cohort (Table 2). The adjusted hazard ratio (aHR) for HCV screening comparing after the intervention with prior was 2.40 (95% CI, 2.34-2.47) among the birth cohort and 2.00 (95% CI, 1.96-2.04) among those not in the birth cohort. These trends were consistent across all locations (eAppendix A [eAppendices available at ajmc.com]). Among all patients enrolled in the health plan as of December 31, 2014, 23.8% (70,016/294,034) had been antibody-screened, including 22% (29,175/131,612) of the birth cohort.

Other significant predictors of screening included first encounter with a primary care provider (ie, internal medicine, OB/GYN, or family practice), which is consistent with our clinical practice model, and non-White race. The adjusted hazards of screening (Table 2) were notably elevated among those with HBV (aHR, 4.42; 95% CI, 3.99-4.90) and HIV (aHR, 6.84; 95% CI, 6.47-7.23). Males had lower hazards than women (aHR 0.96; 95% CI, 0.94-0.97), as did those with higher compared with lower income (aHR, 0.97; 95% CI, 0.96-0.97). We observed some practice variation, with those whose first encounter was in OB/GYN having slightly increased hazards of screening compared with family practice or internal medicine (aHR, 1.24; 95% CI, 1.21-1.26) and those seen in Virginia clinics having slightly lower screening hazards compared with DC/suburban Maryland (aHR, 0.96; 95% CI, 0.94-0.97).

Results from the complete-case analysis that included MSM and illicit drug use in the model were robust and showed a greater hazard for screening in MSM compared with non-MSM (aHR, 1.99; 95% CI, 1.87-2.12) and in patients who inject drugs (aHR, 7.19; 95% CI, 3.17-16.35) compared with those not using drugs (eAppendix B).

Confirmatory HCV RNA or Genotype Testing

A total of 4242 patients tested positive for HCV antibodies, of whom 3643 (86%) underwent subsequent confirmatory testing and 2818 tested positive (2.3% of the 123,572 patients screened). Median time from antibody test to RNA/genotype test was less than 1 month and did not vary by birth cohort, sex, race, income, provider type, or HIV or HBV status. The rate of confirmatory testing was more than 50% higher after 2013 compared with before, and the increase in confirmatory testing did not differ by birth cohort status. Patients whose primary clinic location was in Baltimore (aHR, 1.27; 95% CI, 1.15-1.40) or Virginia (aHR, 1.25; 95% CI, 1.12-1.39) also had greater hazards of confirmatory testing compared with those seen in DC/suburban Maryland, as did those with a prior gastroenterology/ID visit compared with no prior visit (aHR, 1.39; 95% CI, 1.27-1.53) (Table 2).

DISCUSSION

In the year following the release of the 2013 USPSTF HCV screening recommendations highlighting the need for birth cohort screening, associated protections under the ACA, and DAA availability, the adjusted hazard of HCV screening among the birth cohort more than doubled compared with prior years. This increase was 20% higher than the increase observed in patients outside of the birth cohort and demonstrates the influence of guidelines on changes in practice. In addition, the overall screening rate increased by 29% in the year after the interventions, compared with 4% in the year after the 2012 CDC recommendation. The distinction between the CDC and USPSTF recommendations is that, although both provided guidance, the USPSTF recommendations were supported by policy and science that facilitated access to screening and treatment in ways that were absent during the announcement of the CDC recommendations. First, the USPSTF B grading for HCV screening triggered a policy under the ACA to provide screening without additional cost to all those covered under private or public plans.11 Cost has been cited as a barrier to screening for other chronic conditions, such as HIV and breast cancer.19,20 We observed an increase in the per population screening rate that may be associated with removing barriers posed by the cost of screening.

The availability of DAAs shortly after USPSTF announced its recommendation was another timely screening incentive. The goals of screening are to (1) stop transmission of HCV and (2) identify disease in early stages so that it may be treated more effectively and lead to better outcomes than would occur if it were treated at a later stage. Limited therapeutic options prior to 2013 made these goals elusive and may have deterred screening.21,22

Although the age group with the greatest increase in HCV screening was the birth cohort, traditional risk factors for HCV remain important predictors of screening. Patients with HIV and HBV infection, which are often associated with HCV, had 4 to 7 times higher rates of screening than those without these infections. In our complete-case analysis, we show that screening was almost 2-fold higher in MSM and more than 7-fold higher in patients who inject drugs compared with those who denied using drugs. These data suggest a bias toward screening in patients thought to have transmission risk factors. Yet, 30% of the total sample were missing information on MSM and drug use status. Screening based on risk factors will continue to be incomplete if patient–provider discussions regarding risk factors are not routinely done.23-25 We also note lower screening rates among patients from higher-income neighborhoods. Increasing HCV screening rates in lower-income neighborhoods is responsive to a known gap in delivering high-quality care for HCV.1,26 However, if the opioid and heroin epidemic continues to expand beyond poor urban and rural areas into higher-income neighborhoods and affects the epidemiology of viral hepatitis and HIV, excluding patients from HCV screening based on income will leave us vulnerable to underdiagnosing the infection.27 Variability in screening across geographic areas illustrates the need for further education and outreach. All patients at risk of HCV infection should be screened in order to meet the national and international goal of eliminating viral hepatitis by 2030.28,29

Our results inform a general increase in HCV screening over time that has been described previously.14,16 Our study is unique in that we formally estimated and compared screening rates before and after the occurrence of the collective activities of 2013 (ie, the USPSTF guidelines, ACA coverage, and DAA availability) by age group, adjusting for individual-level factors that may confound the relationship between population-level initiatives and screening. This analysis allows us to make inferences on the association between policy measures and screening outcomes across age groups. Specifically, we saw higher screening rates after these coordinated activities compared with before, particularly among the birth cohort, who were a primary target of the updated USPSTF recommendations. Our overall screening rates were similar to those observed in other integrated health systems, which were higher than in the general population and lower than rates in the Veterans Affairs health system.4,6,30-33

Although no EHR changes occurred during the course of this study, clinical leadership was engaged to increase provider knowledge about HCV, the need for screening, and the coming availability of efficacious treatment in preparation for a new initiative to increase HCV screening and linkage to care.34 Cooperative agreements to ensure the availability of competitively priced medication may have further supported screening by providing assurance to clinicians that they would be able to offer therapy to patients with infection. Clinical leadership and the ability to negotiate cooperative agreements are key components of our integrated system that may have contributed to our ability to quickly comply with screening guidelines.


 
Copyright AJMC 2006-2019 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
x
Welcome the the new and improved AJMC.com, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up