Currently Viewing:
The American Journal of Managed Care September 2018
Food Insecurity, Healthcare Utilization, and High Cost: A Longitudinal Cohort Study
Seth A. Berkowitz, MD, MPH; Hilary K. Seligman, MD, MAS; James B. Meigs, MD, MPH; and Sanjay Basu, MD, PhD
Language Barriers and LDL-C/SBP Control Among Latinos With Diabetes
Alicia Fernandez, MD; E. Margaret Warton, MPH; Dean Schillinger, MD; Howard H. Moffet, MPH; Jenna Kruger, MPH; Nancy Adler, PhD; and Andrew J. Karter, PhD
Hepatitis C Care Cascade Among Persons Born 1945-1965: 3 Medical Centers
Joanne E. Brady, PhD; Claudia Vellozzi, MD, MPH; Susan Hariri, PhD; Danielle L. Kruger, BA; David R. Nerenz, PhD; Kimberly Ann Brown, MD; Alex D. Federman, MD, MPH; Katherine Krauskopf, MD, MPH; Natalie Kil, MPH; Omar I. Massoud, MD; Jenni M. Wise, RN, MSN; Toni Ann Seay, MPH, MA; Bryce D. Smith, PhD; Anthony K. Yartel, MPH; and David B. Rein, PhD
“Precision Health” for High-Need, High-Cost Patients
Dhruv Khullar, MD, MPP, and Rainu Kaushal, MD, MPH
From the Editorial Board: A. Mark Fendrick, MD
A. Mark Fendrick, MD
Health Literacy, Preventive Health Screening, and Medication Adherence Behaviors of Older African Americans at a PCMH
Anil N.F. Aranha, PhD, and Pragnesh J. Patel, MD
Early Experiences With the Acute Community Care Program in Eastern Massachusetts
Lisa I. Iezzoni, MD, MSc; Amy J. Wint, MSc; W. Scott Cluett III; Toyin Ajayi, MD, MPhil; Matthew Goudreau, BS; Bonnie B. Blanchfield, CPA, SM, ScD; Joseph Palmisano, MA, MPH; and Yorghos Tripodis, PhD
Economic Evaluation of Patient-Centered Care Among Long-Term Cancer Survivors
JaeJin An, BPharm, PhD, and Adrian Lau, PharmD
Currently Reading
Fragmented Ambulatory Care and Subsequent Healthcare Utilization Among Medicare Beneficiaries
Lisa M. Kern, MD, MPH; Joanna K. Seirup, MPH; Mangala Rajan, MBA; Rachel Jawahar, PhD, MPH; and Susan S. Stuard, MBA
Adjusting Medicare Advantage Star Ratings for Socioeconomic Status and Disability
Melony E. Sorbero, PhD, MS, MPH; Susan M. Paddock, PhD; Cheryl L. Damberg, PhD; Ann Haas, MS, MPH; Mallika Kommareddi, MPH; Anagha Tolpadi, MS; Megan Mathews, MA; and Marc N. Elliott, PhD

Fragmented Ambulatory Care and Subsequent Healthcare Utilization Among Medicare Beneficiaries

Lisa M. Kern, MD, MPH; Joanna K. Seirup, MPH; Mangala Rajan, MBA; Rachel Jawahar, PhD, MPH; and Susan S. Stuard, MBA
Among Medicare beneficiaries, the relationship between fragmented ambulatory care and subsequent emergency department visits and hospital admissions varies with the number of chronic conditions.
Check out our website’s new table/figure pop-up feature! Click on the name of a table or figure in the text to see it in your browser.
DISCUSSION

In this study of Medicare FFS beneficiaries 65 years and older, having highly fragmented care (in the highest quintile of fragmentation scores) seemed to have the greatest impact on subsequent outcomes, suggesting a potential threshold effect. Those with highly fragmented care had a median of 13 ambulatory visits with 8 providers, and their most frequently seen provider typically accounted for just 24% of ambulatory visits. The relationship between highly fragmented care and subsequent outcomes varied by the number of chronic conditions.

Among those with 1 to 2 or 3 to 4 chronic conditions, having the most (vs the least) fragmented care significantly increased the hazard of an ED visit and, separately, increased the hazard of a hospital admission (P <.05 for each comparison). Among those with 5 or more chronic conditions, having the most (vs the least) fragmented care significantly increased the hazard of an ED visit but decreased the hazard of a hospital admission (P <.05 for each comparison). This observation could mean that having many providers for these complex patients is often necessary and sometimes protective. We did not find an association between fragmentation and ED visits or hospital admissions among those with 0 chronic conditions, perhaps because those who are relatively healthy are not as vulnerable to the adverse effects of fragmented care.

Our finding of an increased hazard of ED visits for those with fragmented care and at least 1 chronic condition is consistent with findings from 2 other studies, which were disease-specific: 1 that focused on patients with diabetes7 and another that focused on patients with diabetes, congestive heart failure, or chronic obstructive pulmonary disease.6 Our finding of an increased hazard of hospital admissions for those with fragmented care and 1 to 4 chronic conditions is also consistent with studies that expressed the increased hazard as a function of a 0.1-point increase on a continuous fragmentation scale.6,8 Thus, our work expands the literature by including Medicare beneficiaries regardless of disease type and by quantifying the magnitude of the hazard for the most fragmented care.

The results have implications for the design of future interventions to improve healthcare, in terms of which patients to target for intervention. Many previous efforts to improve healthcare quality and efficiency have targeted the sickest patients,24,25 which makes sense, because these patients account for a disproportionate amount of healthcare utilization.26 However, the effectiveness of these programs has been mixed,24,27 perhaps in part because it is difficult to modify the need for care among the sickest patients. Our study findings suggest that there may be inefficient utilization of healthcare services among those with a moderate number of chronic conditions. Inefficient utilization may be modifiable, and decreasing inefficiency among the many people with a moderate disease burden may have a large aggregate impact.

The results of this study also have implications for what kinds of future interventions to test. Previous efforts to improve care coordination, such as the patient-centered medical home model of care, have not specifically measured or targeted patterns of ambulatory care within individual patients.28 The few previous studies that tried to explicitly decrease fragmentation were small trials but had promising results. A randomized controlled trial of 776 men 55 years and older at a Veterans Administration hospital in Vermont found that those who were randomized to “continuity” (routinely scheduled appointments with the same provider) had fewer emergent hospital admissions and shorter average length of stay than those randomized to “discontinuity” (a die tossed at each scheduled follow-up visit, with a 33% chance of being sent to a different provider).29 A randomized controlled trial of 409 pediatric patients in Seattle, Washington, was successful in decreasing fragmentation through the use of custom alerts built into electronic health records, notifying providers in real time if they were seeing patients with highly fragmented care.30

Limitations

This study has several limitations. First, it is observational, and we cannot rule out unmeasured confounding. Second, we cannot draw conclusions about the medical appropriateness of the care patterns observed. It is possible that fragmentation increases appropriately when patients become acutely ill and that this appropriate use of multiple providers occurs just prior to an ED visit or hospital admission. Future studies with more granular clinical data are needed to help clarify issues of appropriateness. Third, we did not measure communication across physicians. Although having fragmented care may increase the risk of gaps in communication across providers, its presence should not be interpreted as a definite lack of care coordination. Fourth, we did not have data on practice characteristics or practice affiliation, so we were not able to account for those. Fifth, this study took place in 1 region, which may limit generalizability; however, this region is a multipayer, multiprovider healthcare market, which may make it similar to other communities. Future studies could include market characteristics (such as rural vs urban and number of providers per population) as additional explanatory variables. Sixth, this study included only FFS Medicare beneficiaries; results may not apply to patients with other insurance types.

Even with these limitations, this study is relevant, because the importance of healthcare fragmentation has grown with national changes in provider reimbursement. Medicare is moving away from FFS reimbursement toward alternative payment models.31,32 These models require providers to be clinically and financially responsible for all of a patient’s care, not just the care that they themselves provide. Thus, an excess burden of ED visits and hospitalizations from fragmented ambulatory care would be highly relevant to providers seeking to succeed under these new payment models. Large studies to explicitly test and compare the effectiveness of strategies for decreasing fragmentation are warranted. Additional studies could also consider the effect of fragmentation on rates of readmission, given that that is a time when patients are especially vulnerable to the effects of suboptimal care delivery.33-35

CONCLUSIONS

Highly fragmented care can independently increase the hazard of an ED visit or hospital admission, even among those with a moderate number of chronic conditions. Reducing fragmentation for those with a moderate number of chronic conditions may both improve quality and reduce costs. 

Acknowledgments

This study was funded by the Commonwealth Fund (grant #20140960). The authors thank Leah Hellerstein, BA, and Yesenia Miranda, BA, for their assistance with reviewing the literature. The authors thank the New York State Department of Health for facilitating access to the data. The conclusions do not necessarily reflect the views of the Commonwealth Fund or New York State Department of Health.

Author Affiliations: Department of Medicine (LMK, MR), and Department of Healthcare Policy & Research (LMK, JKS, RJ), Weill Cornell Medicine, New York, NY; Lake Fleet Consulting (SSS), Irvington, NY.

Source of Funding: This work was supported by the Commonwealth Fund (grant #20140960).

Author Disclosures: The authors report no relationship or financial interest with any entity that would pose a conflict of interest with the subject matter of this article.

Authorship Information: Concept and design (LMK, SSS); acquisition of data (LMK, RJ, SSS); analysis and interpretation of data (LMK, JKS, MR, RJ); drafting of the manuscript (LMK); critical revision of the manuscript for important intellectual content (LMK, JKS, MR, SSS); statistical analysis (JKS, MR, RJ); obtaining funding (LMK); administrative, technical, or logistic support (LMK); and supervision (LMK).

Address Correspondence to: Lisa M. Kern, MD, MPH, Weill Cornell Medicine, 525 E 68th St, Box 331, New York, NY 10065. Email: lmk2003@med.cornell.edu.
REFERENCES

1. Pham HH, Schrag D, O’Malley AS, Wu B, Bach PB. Care patterns in Medicare and their implications for pay for performance. N Engl J Med. 2007;356(11):1130-1139. doi: 10.1056/NEJMsa063979.

2. O’Malley AS, Reschovsky JD. Referral and consultation communication between primary care and specialist physicians: finding common ground. Arch Intern Med. 2011;171(1):56-65. doi: 10.1001/archinternmed.2010.480.

3. Kern LM, Seirup JK, Casalino LP, Safford MM. Healthcare fragmentation and the frequency of radiology and other diagnostic tests: a cross-sectional study. J Gen Intern Med. 2017;32(2):175-181. doi: 10.1007/s11606-016-3883-z.

4. Romano MJ, Segal JB, Pollack CE. The association between continuity of care and the overuse of medical procedures. JAMA Intern Med. 2015;175(7):1148-1154. doi: 10.1001/jamainternmed.2015.1340.

5. van Walraven C, Oake N, Jennings A, Forster AJ. The association between continuity of care and outcomes: a systematic and critical review. J Eval Clin Pract. 2010;16(5):947-956. doi: 10.1111/j.1365-2753.2009.01235.x.

6. Hussey PS, Schneider EC, Rudin RS, Fox DS, Lai J, Pollack CE. Continuity and the costs of care for chronic disease. JAMA Intern Med. 2014;174(5):742-748. doi: 10.1001/jamainternmed.2014.245.

7. Liu CW, Einstadter D, Cebul RD. Care fragmentation and emergency department use among complex patients with diabetes. Am J Manag Care. 2010;16(6):413-420.

8. Nyweide DJ, Anthony DL, Bynum JP, et al. Continuity of care and the risk of preventable hospitalization in older adults. JAMA Intern Med. 2013;173(20):1879-1885. doi: 10.1001/jamainternmed.2013.10059.

9. QuickFacts: United States. US Census Bureau website. census.gov/quickfacts/fact/table/US/PST045217. Accessed June 4, 2018.

10. Geography: urban and rural. US Census Bureau website. census.gov/geo/reference/urban-rural.html. Accessed June 4, 2018.

11. New York State Community Health Indicator Reports (CHIRS). New York State Department of Health website. health.ny.gov/statistics/chac/indicators. Accessed June 4, 2018.

12. Stuard SS, Blair AJ. Interval examination: regional transformation of care delivery in the Hudson Valley. J Gen Intern Med. 2011;26(11):1371-1373. doi: 10.1007/s11606-011-1817-3.

13. Kern LM, Edwards A, Kaushal R. The patient-centered medical home, electronic health records, and quality of care. Ann Intern Med. 2014;160(11):741-749. doi: 10.7326/M13-1798.

14. HEDIS 2015: volume 2: technical specifications. National Committee for Quality Assurance website. ncqa.org/HEDISQualityMeasurement/HEDISMeasures/HEDIS2015.aspx. Accessed June 4, 2018.

15. Bice TW, Boxerman SB. A quantitative measure of continuity of care. Med Care. 1977;15(4):347-349.

16. Pollack CE, Hussey PS, Rudin RS, Fox DS, Lai J, Schneider EC. Measuring care continuity: a comparison of claims-based methods. Med Care. 2016;54(5):e30-e34. doi: 10.1097/MLR.0000000000000018.

17. Chronic Conditions Data Warehouse website. ccwdata.org. Accessed June 4, 2018.

18. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373-383.

19. Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol. 1992;45(6):613-619. doi: 10.1016/0895-4356(92)90133-8.

20. Allison PD. Chapter 5: estimating Cox regression models with PROC PHREG. In: Allison PD. Survival Analysis Using SAS: A Practical Guide. 2nd ed. Cary, NC: SAS Institute Inc; 2010:125-200.

21. SAS Institute Inc. The PHREG procedure. In: SAS Institute Inc. SAS/STAT 14.2 User’s Guide. Cary, NC: SAS Institute Inc; 2016.

22. Thomas L, Reyes EM. Survival estimation for Cox regression models with time-varying coefficients using SAS and R. J Stat Softw. 2014;61:1-23. doi: 10.18637/jss.v061.c01.

23. Krumholz HM, Nuti SV, Downing NS, Normand SL, Wang Y. Mortality, hospitalizations, and expenditures for the Medicare population aged 65 years or older, 1999-2013 [erratum in JAMA. 2015;314(8):837. doi: 10.1001/jama.2015.10005]. JAMA. 2015;314(4):355-365. doi: 10.1001/jama.2015.8035.

24. Fireman B, Bartlett J, Selby J. Can disease management reduce health care costs by improving quality? Health Aff (Millwood). 2004;23(6):63-75. doi: 10.1377/hlthaff.23.6.63.

25. Haas LR, Takahashi PY, Shah ND, et al. Risk-stratification methods for identifying patients for care coordination. Am J Manag Care. 2013;19(9):725-732.

26. Blumenthal D, Chernof B, Fulmer T, Lumpkin J, Selberg J. Caring for high-need, high-cost patients—an urgent priority. N Engl J Med. 2016;375(10):909-911. doi: 10.1056/NEJMp1608511.

27. Peikes D, Chen A, Schore J, Brown R. Effects of care coordination on hospitalization, quality of care, and health care expenditures among Medicare beneficiaries: 15 randomized trials. JAMA. 2009;301(6):603-618. doi: 10.1001/jama.2009.126.

28. Sinaiko AD, Landrum MB, Meyers DJ, et al. Synthesis of research on patient-centered medical homes brings systematic differences into relief. Health Aff (Millwood). 2017;36(3):500-508. doi: 10.1377/hlthaff.2016.1235.

29. Wasson JH, Sauvigne AE, Mogielnicki RP, et al. Continuity of outpatient medical care in elderly men: a randomized trial. JAMA. 1984;252(17):2413-2417. doi: 10.1001/jama.1984.03350170015011.

30. Christakis DA, Wright JA. Can continuity of care be improved? results from a randomized pilot study. Ambul Pediatr. 2004;4(4):336-339.

31. Burwell SM. Setting value-based payment goals—HHS efforts to improve U.S. health care. N Engl J Med. 2015;372(10):897-899. doi: 10.1056/NEJMp1500445.

32. Doherty RB. Goodbye, Sustainable Growth Rate—hello, Merit-based Incentive Payment System. Ann Intern Med. 2015;163(2):138-139. doi: 10.7326/M15-0992.

33. Naylor M, Brooten D, Jones R, Lavizzo-Mourey R, Mezey M, Pauly M. Comprehensive discharge planning for the hospitalized elderly: a randomized clinical trial. Ann Intern Med. 1994;120(12):999-1006. doi: 10.7326/0003-4819-120-12-199406150-00005.

34. Naylor MD, Aiken LH, Kurtzman ET, Olds DM, Hirschman KB. The care span: the importance of transitional care in achieving health reform. Health Aff (Millwood). 2011;30(4):746-754. doi: 10.1377/hlthaff.2011.0041.

35. Naylor MD, Brooten D, Campbell R, et al. Comprehensive discharge planning and home follow-up of hospitalized elders: a randomized clinical trial. JAMA. 1999;281(7):613-620. doi: 10.1001/jama.281.7.613.
PDF
 
Copyright AJMC 2006-2020 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
x
Welcome the the new and improved AJMC.com, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up