Currently Viewing:
The American Journal of Managed Care January 2019
The Gamification of Healthcare: Emergence of the Digital Practitioner?
Eli G. Phillips Jr, PharmD, JD; Chadi Nabhan, MD, MBA; and Bruce A. Feinberg, DO
From the Editorial Board: Rajesh Balkrishnan, PhD
Rajesh Balkrishnan, PhD
The Health Information Technology Special Issue: New Real-World Evidence and Practical Lessons
Mary E. Reed, DrPH
Currently Reading
Inpatient Electronic Health Record Maintenance From 2010 to 2015
Vincent X. Liu, MD, MS; Nimah Haq, MPH; Ignatius C. Chan, MD; and Brian Hoberman, MD, MBA
Mind the Gap: The Potential of Alternative Health Information Exchange
Jordan Everson, PhD; and Dori A. Cross, PhD
Patient and Clinician Experiences With Telehealth for Patient Follow-up Care
Karen Donelan, ScD, EdM; Esteban A. Barreto, MA; Sarah Sossong, MPH; Carie Michael, SM; Juan J. Estrada, MSc, MBA; Adam B. Cohen, MD; Janet Wozniak, MD; and Lee H. Schwamm, MD
Understanding the Relationship Between Data Breaches and Hospital Advertising Expenditures
Sung J. Choi, PhD; and M. Eric Johnson, PhD
Organizational Influences on Healthcare System Adoption and Use of Advanced Health Information Technology Capabilities
Paul T. Norton, MPH, MBA; Hector P. Rodriguez, PhD, MPH; Stephen M. Shortell, PhD, MPH, MBA; and Valerie A. Lewis, PhD, MA
Alternative Payment Models and Hospital Engagement in Health Information Exchange
Sunny C. Lin, MS; John M. Hollingsworth, MD, MS; and Julia Adler-Milstein, PhD
Drivers of Health Information Exchange Use During Postacute Care Transitions
Dori A. Cross, PhD; Jeffrey S. McCullough, PhD; and Julia Adler-Milstein, PhD

Inpatient Electronic Health Record Maintenance From 2010 to 2015

Vincent X. Liu, MD, MS; Nimah Haq, MPH; Ignatius C. Chan, MD; and Brian Hoberman, MD, MBA
In the 6 years following inpatient electronic health record (EHR) implementation, an average of 2.5 significant EHR changes per day were made for maintenance and improvement.
ABSTRACT

Objectives: To describe the scale and scope of inpatient electronic health record (EHR) maintenance following initial implementation.

Study Design: A retrospective study reviewing EHR change documentation within an integrated healthcare delivery system that has 21 hospitals.

Methods: Between 2010 and 2015, we identified and categorized all significant changes made to the inpatient EHR, as documented within monthly EHR communication updates. We categorized EHR changes as updates to existing functionality or upgrades to new functionality. We grouped changes within larger functional domains as orders, alerts and customization, surgical and emergency department (ED), data review, reports and health information management, and other. We also identified the clinical areas and user roles targeted by these changes.

Results: Over a 6-year period, 5551 unique changes were made to the inpatient EHR, with a median of 72 changes per month. Changes most frequently targeted orders (44.7% of 2190 change documents) and order sets (29.9% of documents). In total, changes affected 135 EHR functions. A total of 151 unique user roles were affected by these changes, with the most frequent roles including nurses (30.6%), physicians (26.6%), and other clinical staff (22.7%). The clinical areas most targeted by changes included surgical areas and the ED.

Conclusions: Over 6 years, EHR maintenance for clinical functionality was substantial and varied with pervasive impacts, requiring persistent attention, diverse expertise, and interdisciplinary collaboration.

Am J Manag Care. 2019;25(1):18-21
Takeaway Points

We evaluated clinically oriented changes needed to maintain an inpatient electronic health record (EHR) in a single health system. Over 6 years, 5551 unique changes were made that together had an impact on more than 130 EHR tools and 150 user roles.
  • Although much attention has focused on initial EHR implementation, ongoing maintenance needs are substantial, diverse, and pervasive.
  • The most frequently updated EHR elements targeted order sets, surgical and emergency department areas, and users (nurses, physicians, and pharmacists).
  • Given our focus only on inpatient EHR clinical changes, our findings are likely to be a significant underestimate of ongoing EHR resource needs.
Electronic health record (EHR) implementation within US acute care hospitals increased rapidly between 2010 and 2015 as a result of the Health Information Technology for Economic and Clinical Health Act of 2009.1-3 Among hospitals with and without an EHR system in 2009, some of the major barriers to EHR adoption were perceived to include the cost of purchase, uncertain return on investment, clinician resistance, and inadequate information technology staff.4,5 Many of these barriers have been persistently cited as concerns during the subsequent period of rapid EHR uptake.6-18

Ongoing maintenance has also been cited as a key barrier to EHR implementation and use. However, few studies have described the subsequent improvements needed to maintain and optimize EHR functionality over time.4,5 Given the substantial costs resulting from initial implementation, far less attention has been devoted to the maintenance needs that follow for optimal EHR performance. In this study, our goal was to describe the scale and scope of changes made to an inpatient EHR system after initial implementation within the 21 hospitals of Kaiser Permanente Northern California (KPNC).

METHODS

This study was deemed exempt by the Kaiser Permanente Institutional Review Board. KPNC is an integrated healthcare delivery system serving 4.1 million members at 21 hospitals. Implementation of an inpatient EHR system (Epic; Verona, Wisconsin), known internally as KP HealthConnect (KPHC), was completed in 2010; outpatient KPHC completed implementation in 2008.19

We evaluated significant changes made to the inpatient EHR system based on documentation within monthly “KPHC communication” reports between 2010 and 2015. These reports were used to inform end users about upcoming KPHC updates (ie, changes to existing functionality) and/or upgrades (ie, new functionality). Multiple unique changes affecting the same EHR functionality were included within a single change document, which described the overall changes to that functionality.

The changes arose from diverse sources, including clinician requests; feedback from clinical technology leads; safety, risk, or reporting needs; and/or forthcoming system upgrades. Although several governance committees exist to oversee EHR changes, the modifications described here were shepherded through the change management process by a core regional team of physician and clinician informaticists with significant experience in EHR clinical functionality; working alongside this core team was informatics staff experienced in building EHR tools. The changes documented within these reports represented only a subset of all requested changes, as not all requests were ultimately fulfilled. Thus, the reports included only those changes that were implemented as prioritized by clinical value, safety, regulations, resource availability, and end-user satisfaction. Documented changes also varied in scope and scale, with some being implemented with relative ease and others requiring months of preparation.

After identifying all changes grouped within the documents, we further categorized them within broad functional domains based on their type, including orders (single, grouped, and templated orders), alerts and customization (user-customized tools and decision support), surgical and emergency department (ED) (perioperative- and ED-specific tools), data review (clinician-facing tools for review of patient charts, results, and imaging), reports and health information management (HIM) (unit- and group-based reporting tools), and other (patient tools and other change types). For each change, we also identified and grouped the type of user affected, as well as the clinical or functional area affected, based on report documentation.

Data are reported as median (interquartile range [IQR]) and number (percent). Analyses were conducted using STATA 14.1/SE (StataCorp; College Station, Texas).


 
Copyright AJMC 2006-2018 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
x
Welcome the the new and improved AJMC.com, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up
×

Sign In

Not a member? Sign up now!