Currently Viewing:
The American Journal of Managed Care November 2019
Population Health Screenings for the Prevention of Chronic Disease Progression
Maren S. Fragala, PhD; Dov Shiffman, PhD; and Charles E. Birse, PhD
Currently Reading
Comprehensive Health Management Pharmacist-Delivered Model: Impact on Healthcare Utilization and Costs
Leticia R. Moczygemba, PhD, PharmD; Ahmed M. Alshehri, PhD; L. David Harlow III, PharmD; Kenneth A. Lawson, PhD; Debra A. Antoon, BSPharm; Shanna M. McDaniel, MA; and Gary R. Matzke, PharmD
Value Assessment and Heterogeneity: Another Side to the Story
Steven D. Pearson, MD, MSc
From the Editorial Board: Joshua J. Ofman, MD, MSHS
Joshua J. Ofman, MD, MSHS
Multimodality Cancer Care and Implications for Episode-Based Payments in Cancer
Suhas Gondi, BA; Alexi A. Wright, MD, MPH; Mary Beth Landrum, PhD; Jose Zubizarreta, PhD; Michael E. Chernew, PhD; and Nancy L. Keating, MD, MPH
Medicare Advantage Plan Representatives’ Perspectives on Pay for Success
Emily A. Gadbois, PhD; Shayla Durfey, BS; David J. Meyers, MPH; Joan F. Brazier, MS; Brendan O’Connor, BA; Ellen McCreedy, PhD; Terrie Fox Wetle, PhD; and Kali S. Thomas, PhD
Cost Analysis of COPD Exacerbations and Cardiovascular Events in SUMMIT
Richard H. Stanford, PharmD, MS; Anna D. Coutinho, PhD; Michael Eaddy, PharmD, PhD; Binglin Yue, MS; and Michael Bogart, PharmD
CKD Quality Improvement Intervention With PCMH Integration: Health Plan Results
Joseph A. Vassalotti, MD; Rachel DeVinney, MPH, CHES; Stacey Lukasik, BA; Sandra McNaney, BS; Elizabeth Montgomery, BS; Cindy Voss, MA; and Daniel Winn, MD
Importance of Reasons for Stocking Adult Vaccines
David W. Hutton, PhD; Angela Rose, MPH; Dianne C. Singer, MPH; Carolyn B. Bridges, MD; David Kim, MD; Jamison Pike, PhD; and Lisa A. Prosser, PhD
Prescribing Trend of Pioglitazone After Safety Warning Release in Korea
Han Eol Jeong, MPH; Sung-Il Cho, MD, ScD; In-Sun Oh, BA; Yeon-Hee Baek, BA; and Ju-Young Shin, PhD
Multipayer Primary Care Transformation: Impact for Medicaid Managed Care Beneficiaries
Shaohui Zhai, PhD; Rebecca A. Malouin, PhD, MPH, MS; Jean M. Malouin, MD, MPH; Kathy Stiffler, MA; and Clare L. Tanner, PhD

Comprehensive Health Management Pharmacist-Delivered Model: Impact on Healthcare Utilization and Costs

Leticia R. Moczygemba, PhD, PharmD; Ahmed M. Alshehri, PhD; L. David Harlow III, PharmD; Kenneth A. Lawson, PhD; Debra A. Antoon, BSPharm; Shanna M. McDaniel, MA; and Gary R. Matzke, PharmD
Pharmacist-provided comprehensive medication management led to a significant difference in emergency department visits and a cost savings of $2.10 to $2.60 for every $1.00 spent relative to a comparator group.
DISCUSSION

The CHaMPS program showed a positive impact on ED visits and resulted in a positive benefit-cost ratio compared with the matched comparator group. Outcomes were achieved as a result of 5705 interventions relating to MRPs, education, and medication reconciliation (18.3 per patient) delivered by pharmacists. Although some findings, such as the change in unplanned admissions between the CHaMPS and comparator groups, were not significant, the direction of the change for all outcomes in the CHaMPS group indicated progress toward achieving the desired outcomes.

Unplanned hospital admissions decreased in the CHaMPS group and increased somewhat in the comparator group, although this difference between the 2 groups was not statistically significant. ED visits were stable at the 180- and 365-day postintervention periods for the CHaMPS patients. In contrast, ED visits for the comparator group increased significantly during the postintervention periods, and the change in ED visits was significant between the 2 groups for both postintervention periods. A systematic review of pharmacist interventions found mixed results with regard to the impact of pharmacist interventions on hospitalizations and ED visits, with about half of studies reporting positive findings.12 Results from a recent study, which implemented a similar care model and focused on chronic disease management, found that pharmacist interventions did not affect ED visits but did significantly decrease hospitalizations.14 Another study reported a significant decrease in medication-related hospitalizations as a result of a pharmacy medication management intervention, although the intervention focused on older adults who were at risk for experiencing a medication problem.13 The fact that, in the current study, the comparator group ED visits increased, whereas the CHaMPS group ED visits stayed the same, is important given that ED visits can increase healthcare costs. This finding may be a result of the patient-centered medication care plans and chronic disease and medication education interventions that were delivered by CHaMPS. Although the difference in unplanned hospital admissions was not statistically significant between the 2 groups, the difference likely has clinical significance and was reflected in the positive findings of the cost analysis.

The cost analysis revealed a cost savings of $2.10 to $2.60 in hospital and ED costs for every $1.00 spent on the CHaMPS program. In the current model, these cost savings are realized by a payer, such as Medicare, rather than directly benefitting the health system, because the savings resulted from decreased utilization of services. The cost savings would be more applicable to health systems that adopt accountable care organization models with cost-reduction incentives and embed pharmacists as members of the primary care team. A recent article reported a 5-to-1 return on investment (ROI) for a similar chronic disease–focused pharmacist intervention in 23 primary care clinics in southwest Virginia. Although the ROI was higher when compared with the CHaMPS program, the only program costs included were pharmacist salary and fringe benefits; initial development and implementation program costs were not included in the ROI calculation.14 Findings were similar to a medication management pharmacist intervention, which focused on managing medications for all chronic conditions, in a group of 88 Medicaid patients in Connecticut that found an ROI of 2.5:1 when accounting for pharmacist and administrative costs of delivering the intervention.21 This also aligns with a statewide pharmacist intervention in Hawaii that found a ROI of 2.6:1 when considering savings in medication-related hospitalizations, although the intervention differed from the CHaMPS intervention in that it was delivered primarily in the community setting.13

Limitations

Despite constructing a well-matched comparator group on baseline demographic and health-related variables, there were still differences in baseline variables between the 2 groups. This could mean that those in CHaMPS had a greater chance of being referred to the program based on certain factors, such as the physician referral process, that were not considered in the propensity scoring algorithm. It is also possible that other unobservable characteristics may have resulted in selection bias for the CHaMPS group. The unknown factors in the referral process may also have resulted in regression to the mean for both groups. To mitigate the impact of selection bias and regression to the mean, baseline utilization and clinical measures were included as covariates in the multivariate models. Because only 1 hospital EHR was used as the data source, it is possible that hospital admissions and ED visits are underreported. For the cost analysis, only hospital and ED costs were included as benefits. Other costs related to the number of physician office visits and physician time were not included, which may have led to under- or overestimation of the cost savings.

CONCLUSIONS

This study supports the inclusion of pharmacists on healthcare teams. CHaMPS successfully integrated pharmacists within family medicine clinics and yielded a positive benefit-cost ratio. CHaMPS is a robust, patient-centered program that delivered a combination of medication-related, education, and medication reconciliation pharmacist interventions to either stabilize or decrease unplanned admissions and ED visits in patients with chronic conditions.

Author Affiliations: University of Texas College of Pharmacy, Health Outcomes Division (LRM, KAL), Austin, TX; Clinical Pharmacy Department, College of Pharmacy, Prince Sattam Bin Abdulaziz University (AMA), Alkarj, Saudi Arabia; Martin Health System (LDH, DAA, SMM), Stuart, FL; Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University (GRM), Richmond, VA.

Source of Funding: A grant from Martin Health Foundation provided funding support for this study.

Author Disclosures: Drs Moczygemba, Alshehri, and Lawson received funding for the project from Martin Health Foundation and received payment for their involvement in the preparation of this manuscript as part of the funding expectations. Dr Harlow, Ms Antoon, and Ms McDaniel are employed by Cleveland Clinic Martin Health. Dr Matzke received payment for his involvement in the project, including preparation of this manuscript, from the University of Texas as a subcontractor because he had retired from Virginia Commonwealth University and thus had no means to transfer research funds between the universities.

Authorship Information: Concept and design (LRM, AMA, LDH, KAL, DAA, SMM, GRM); acquisition of data (LDH, DAA, SMM); analysis and interpretation of data (LRM, AMA, KAL, SMM, GRM); drafting of the manuscript (LRM, AMA, LDH, KAL, DAA, GRM); critical revision of the manuscript for important intellectual content (LRM, KAL, GRM); statistical analysis (LRM, AMA, KAL); provision of patients or study materials (LDH, DAA); obtaining funding (LRM, LDH); administrative, technical, or logistic support (LRM, AMA, LDH, KAL, DAA, SMM); and supervision (LDH, DAA).

Address Correspondence to: Leticia R. Moczygemba, PhD, PharmD, University of Texas College of Pharmacy, Health Outcomes Division, 2409 University Ave, Stop A1930, Austin, TX 78712-1117. Email: lrmoczygemba@austin.utexas.edu.
REFERENCES

1. Hartman M, Martin AB, Espinosa N, Catlin A; The National Health Expenditure Accounts Team. National health care spending in 2016: spending and enrollment growth slow after initial coverage expansions. Health Aff (Millwood). 2018;37(1):150-160. doi: 10.1377/hlthaff.2017.1299.

2. Gerteis J, Izrael D, Deitz D, et al. Multiple chronic conditions chartbook: 2010 Medical Expenditure Panel Survey Data. Agency for Healthcare Research and Quality website. ahrq.gov/sites/default/files/wysiwyg/professionals/prevention-chronic-care/decision/mcc/mccchartbook.pdf. Published April 2014. Accessed November 29, 2018.

3. Buttorff C, Ruder T, Bauman M. Multiple chronic conditions in the United States. RAND Corporation website. rand.org/content/dam/rand/pubs/tools/TL200/TL221/RAND_TL221.pdf. Published 2017. Accessed November 29, 2018.

4. Watanabe JH, McInnis T, Hirsch JD. Cost of prescription drug–related morbidity and mortality. Ann Pharmacother. 2018;52(9):829-837. doi: 10.1177/1060028018765159.

5. Manolakis PG, Skelton JB. Pharmacists’ contributions to primary care in the United States collaborating to address unmet patient care needs: the emerging role for pharmacists to address the shortage of primary care providers. Am J Pharm Educ. 2010;74(10):S7. doi: 10.5688/aj7410s7.

6. The patient-centered medical home: integrating comprehensive medication management to optimize patient outcomes. Patient-Centered Primary Care Collaborative website. pcpcc.org/sites/default/files/media/medmanagement.pdf. Published June 2012. Accessed September 28, 2019.

7. Shehab N, Lovegrove MC, Gellar AI, Rose KO, Weidle NJ, Budnitz DS. US emergency department visits for outpatient adverse drug events, 2013-2014. JAMA. 2016;316(20):2115-2125. doi: 10.1001/jama.2016.16201.

8. Viswanathan M, Golin CE, Jones CD, et al. Interventions to improve adherence to self-administered medications for chronic diseases in the United States: a systematic review. Ann Intern Med. 2012;157(11):785-795. doi: 10.7326/0003-4819-157-11-201212040-00538.

9. Advancing team-based care through collaborative practice agreements: a resource and implementation guide for adding pharmacists to the care team. CDC website. cdc.gov/dhdsp/pubs/docs/CPA-Team-Based-Care.pdf. Published 2017. Accessed September 28, 2019.

10. Giberson S, Yoder S, Lee MP. Improving patient and health system outcomes through advanced pharmacy practice: a report to the U.S. Surgeon General 2011. American College of Clinical Pharmacy website. accp.com/docs/positions/misc/improving_patient_and_health_system_outcomes.pdf. Updated December 2011. Accessed September 28, 2019.

11. Peikes DN, Reid RJ, Day TJ, et al. Staffing patterns of primary care practices in the comprehensive primary care initiative. Ann Fam Med. 2014;12(2):142-149. doi: 10.1370/afm.1626.

12. Chisholm-Burns MA, Kim Lee J, Spivey CA, et al. US pharmacists’ effect as team members on patient care: systematic review and meta-analyses. Med Care. 2010;48(10):923-933. doi: 10.1097/MLR.0b013e3181e57962.

13. Pellegrin KL, Krenk L, Oakes SJ, et al. Reductions in medication-related hospitalizations in older adults with medication management by hospital and community pharmacists: a quasi-experimental study. J Am Geriatr Soc. 2017;65(1):212-219. doi: 10.1111/jgs.14518.

14. Matzke GR, Moczygemba LR, Williams KJ, Czar MJ, Lee WT. Impact of a pharmacist-physician collaborative care model on patient outcomes and health services utilization. Am J Health Syst Pharm. 2018;75(14):1039-1047. doi: 10.2146/ajhp170789.

15. Occupational employment and wages, May 2017: 29-2071 medical records and health information technicians. Bureau of Labor Statistics website. www.bls.gov/oes/2017/may/oes292071.htm. Updated March 30, 2018. Accessed November 2, 2019.

16. Occupational employment and wages, May 2017: 31-9092 medical assistants. Bureau of Labor Statistics website. www.bls.gov/oes/2017/may/oes319092.htm. Updated March 30, 2018. Accessed November 2, 2019.

17. Occupational employment and wages, May 2017: 29-1051 pharmacists. Bureau of Labor Statistics website. www.bls.gov/oes/2017/may/oes291051.htm. Updated March 30, 2018. Accessed November 2, 2019.

18. Occupational employment and wages, May 2017: 11-9111 medical and health services managers. Bureau of Labor Statistics website. www.bls.gov/oes/2017/may/oes119111.htm. Updated March 30, 2018. Accessed November 2, 2019.

19. Mean expenditure per event by event type, United States, 1996-2016. Agency for Healthcare Research and Quality website. meps.ahrq.gov/mepstrends/hc_use. Accessed September 6, 2018.

20. Polinski JM, Moore JM, Kyrychenko P, et al. An insurer’s care transition program emphasizes medication reconciliation, reduces readmissions and costs. Health Aff (Millwood). 2016;35(7):1222-1229. doi: 10.1377/hlthaff.2015.0648.

21. Smith M, Giuliano MR, Starkowski MP. In Connecticut: improving patient medication management in primary care [erratum in Health Aff (Millwood). 2011;30(6):1217. doi: 10.1377/hlthaff.2011.0311]. Health Aff (Millwood). 2011;30(4):646-654. doi: 10.1377/hlthaff.2011.0002.
PDF
 
Copyright AJMC 2006-2020 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
x
Welcome the the new and improved AJMC.com, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up