Currently Viewing:
Supplements A Managed Care Perspective on Immunotherapy Treatment for Peanut Allergies
Severity of Peanut Allergy and the Unmet Gaps in Care: A Call to Action
Jay A. Lieberman, MD
Management of Peanut Allergy: A Focus on Novel Immunotherapies
Christopher P. Parrish, MD
Currently Reading
The Economic Impact of Peanut Allergies
H. Eric Cannon, PharmD, FAMCP
Posttest

The Economic Impact of Peanut Allergies

H. Eric Cannon, PharmD, FAMCP
A Canadian study of a cohort of 1941 children found that 567 accidental exposures occurred in 429 patients, with an annual incidence rate of 12.4%. Of the 377 moderate or severe exposures, just 28.9% (109) sought medical attention and, of those, just 36.7% (40) received epinephrine.27 Indeed, results of studies find that less than half of those requiring anaphylactic treatment receive it.14,28,29 Given the high costs of anaphylaxis discussed earlier, interventions to better control or even eliminate peanut allergies could provide not just a significantly improved QOL for parents and children, but a significant savings for the healthcare system, as well.

Economic Analysis of Oral Immunotherapy

There is just 1 published economic analysis of oral immunotherapy (OIT). It evaluated a double-blind, placebo-controlled randomized trial to investigate OIT combined with a probiotic over 18 months in 62 children aged 1 to 10 years (56 of whom completed the trial). Possible sustained unresponsiveness (the primary outcome) occurred in 82.1% of those receiving OIT and in 3.6% receiving placebo (P <.001) between 2 and 5 weeks after discontinuing therapy. Desensitization occurred in 89.7% of the treated patients and 7.1% of those receiving placebo (P <.001).30

Using the standard $50,000 per quality-adjusted life-year as the indication of cost-effectiveness, the authors concluded that OIT was cost-effective over a prolonged time. They noted, however, that if the cost of the therapy increases over time, their analysis could change. If long-term rates of anaphylaxis drop below 6% per year, OIT may prove favorable in reducing anaphylaxis when compared with strict avoidance, they wrote.31

Barriers to OIT

Although OIT has the potential to be an effective disease-modifying approach for peanut allergy, a 2016 survey of 28 community and academic allergists (14 of whom offered OIT) and 6 nurse food allergy specialists who managed more than 100 patients with peanut allergies found several barriers to its use32:
  • Lack of a medicinal product meeting the required standards for FDA approval
  • Lack of standardized dosing regimens
  • Medical and legal implications of offering non–FDA-approved OIT
  • Unclear defined criteria for appropriate patient selection
  • Insufficient long-term safety and efficacy data
  • Lack of correlation between maintenance of OIT dosing and level of protection
Looking Forward

The pathway to decreasing the prevalence of peanut allergies is multifactorial and starts with awareness and education for parents to incorporate peanut protein when infants are first introduced to solid foods. Given the results of the Learning Early About Peanut Allergy trial, which demonstrated a significant decrease in the frequency of peanut allergies in high-risk children, and the National Institute of Allergy and Infectious Diseases–sponsored expert panel guideline report,33 there is potential for a slowdown in the trend of increased incidence.34 Desensitization with oral, sublingual, or subcutaneous peanut proteins has the potential to mitigate the severity of allergic reactions. As highlighted in the second part of this supplement, several compounds with unique mechanisms of action are under investigation as immunotherapy for peanut allergy, most of which are biologics. However, given the high cost of these drugs in other conditions (omalizumab currently costs about $1081 for a single vial), and the high prevalence of peanut allergy in the pediatric and adult population, it is imperative that payers prepare for the economic impact of these treatments.32 To date, no cost-effectiveness analyses have been published on the potential impact of these new therapies.

Conclusions

The growing prevalence and severity of peanut allergy among US children and adults has shown no sign of abating. Given the high medical and indirect costs of peanut allergy, as well as its impact on the parents’ and children’s QOL, it is imperative that new methods of treating peanut allergies be implemented. Several investigational immunotherapy approaches may provide the first FDA-approved treatment for peanut allergies within the next few years. Although there is little evidence defining the cost-effectiveness of current or future methods of managing peanut allergy, it is possible to theorize that reducing outpatient and ED visits and the need for rescue therapy with epinephrine, as well as missed work and school days, could lead to lower direct medical and indirect costs. Thus, payers must consider the implications of adding these therapies to their formularies from the economic, adherence, and educational perspectives. 

Author affiliation: Vice President, Pharmacy Benefits, SelectHealth, Murray, UT.
Funding source: This activity is supported by an independent educational grant from Aimmune Therapeutics.
Author disclosure: Dr Cannon has no relevant financial relationships with commercial interests to disclose.
Authorship information: Concept and design, acquisition of data, drafting of the manuscript, and critical revision of the manuscript for important intellectual content.
Address correspondence to: Eric.Cannon@selecthealth.org.
Medical writing and editorial support provided by: Debra Gordon, MS.
 
1. Nicolaou N, Poorafshar M, Murray C, et al. Allergy or tolerance in children sensitized to peanut: prevalence and differentiation using component-resolved diagnostics. J Allergy Clin Immunol. 2010;125(1):191-197.e1-13. doi: 10.1016/j.jaci.2009.10.008.
2. Sicherer SH, Muñoz-Furlong A, Sampson HA. Prevalence of peanut and tree nut allergy in the United States determined by means of a random digit dial telephone survey: a 5-year follow-up study. J Allergy Clin Immunol. 2003;112(6):1203-1207. doi: 10.1016/S0091-6749(03)02026-8.
3. Gupta R, Warren C, Blumenstock J, et al. The prevalence of childhood food allergy in the United States: an update. Paper presented at: American College of Allergy, Asthma & Immunology Annual Scientific Meeting; October 26-30, 2017; Boston, MA. Abstract OR078.
4. Dyer AA, Rivkina V, Perumal D, Smeltzer BM, Smith BM, Gupta RS. Epidemiology of childhood peanut allergy. Allergy Asthma Proc. 2015;36(1):58-64. doi: 10.2500/aap.2015.36.3819.
5. Cianferoni A, Muraro A. Food-induced anaphylaxis. Immunol Allergy Clin North Am. 2012;32(1):165-195. doi: 10.1016/j.iac.2011.10.002.
6. Sicherer SH, Muñoz-Furlong A, Burks AW, Sampson HA. Prevalence of peanut and tree nut allergy in the US determined by a random digit dial telephone survey. J Allergy Clin Immunol. 1999;103(4):559-562.
7. Sicherer SH, Muñoz-Furlong A, Godbold JH, Sampson HA. US prevalence of self-reported peanut, tree nut, and sesame allergy: 11-year follow-up. J Allergy Clin Immunol. 2010;125(6):1322-1326. doi: 10.1016/j.jaci.2010.03.029.
8. Food allergy in the United States: recent trends and costs. an analysis of private claims data. Food Allergy Research and Education website. s3.amazonaws.com/media2.fairhealth.org/whitepaper/asset/Food%20Allergy%20White%20Paper%20Final.compressed.pdf. Published November 2017. Accessed June 19, 2018.
9. Skolnick HS, Conover-Walker MK, Koerner CB, Sampson HA, Burks W, Wood RA. The natural history of peanut allergy. J Allergy Clin Immunol. 2001;107(2):367-374. doi: 10.1067/mai.2001.112129.
10. Gupta R, Holdford D, Bilaver L, Dyer A, Holl JL, Meltzer D. The economic impact of childhood food allergy in the United States. JAMA Pediatr. 2013;167(11):1026-1031. doi: 10.1001/jamapediatrics.2013.2376.
11. 2016 Human Capital Benchmarking Report. Society for Human Resource Management website. shrm.org/hr-today/trends-and-forecasting/research-and-surveys/Documents/2016-Human-Capital-Report.pdf. Published November 2016. Accessed July 9, 2018.
12. Gupta RS, Springston EE, Warrier MR, et al. The prevalence, severity, and distribution of childhood food allergy in the United States. Pediatrics. 2011;128(1):e9-e17. doi: 10.1542/peds.2011-0204.
13. Motosue MS, Bellolio MF, Van Houten HK, Shah ND, Campbell RL. Increasing emergency
department visits for anaphylaxis, 2005-2014. J Allergy Clin Immunol Pract. 2017;5(1):171-175.e3. doi: 10.1016/j.jaip.2016.08.013.
14. Sclar DA, Lieberman PL. Anaphylaxis: underdiagnosed, underreported, and undertreated. Am J Med. 2014;127(suppl 1):S1-S5. doi: 10.1016/j.amjmed.2013.09.007.
15. Parlaman JP, Oron AP, Uspal NG, DeJong KN, Tieder JS. Emergency and hospital care for food-related anaphylaxis in children. Hosp Pediatr. 2016;6(5):269-274. doi: 10.1542/hpeds.2015-0153.
16. Dyer AA, Lau CH, Smith TL, Smith BM, Gupta RS. Pediatric emergency department visits and hospitalizations due to food-induced anaphylaxis in Illinois. Ann Allergy Asthma Immunol. 2015;115(1):56-62. doi: 10.1016/j.anai.2015.05.006.
17. Patel DA, Holdford DA, Edwards E, Carroll NV. Estimating the economic burden of food-induced allergic reactions and anaphylaxis in the United States. J Allergy Clin Immunol. 2011;128(1):110-115.e5. doi: 10.1016/j.jaci.2011.03.013.
18. Walkner M, Warren C, Gupta RS. Quality of life in food allergy patients and their families. Pediatr Clin North Am. 2015;62(6):1453-1461. doi: 10.1016/j.pcl.2015.07.003.
19. Roy KM, Roberts MC. Peanut allergy in children: relationships to health-related quality of life, anxiety, and parental stress. Clin Pediatr (Phila). 2011;50(11):1045-1051. doi: 10.1177/0009922811412584.
20. Avery NJ, King RM, Knight S, Hourihane JO. Assessment of quality of life in children with peanut allergy. Pediatr Allergy Immunol. 2003;14(5):378-382.
21. Primeau MN, Kagan R, Joseph L, et al. The psychological burden of peanut allergy as perceived by adults with peanut allergy and the parents of peanut-allergic children. Clin Exp Allergy. 2000;30(8):1135-1143.
22. King RM, Knibb RC, Hourihane JO. Impact of peanut allergy on quality of life, stress and anxiety in the family. Allergy. 2009;64(3):461-468. doi: 10.1111/j.1398-9995.2008.01843.x.
23. Sicherer SH, Burks AW, Sampson HA. Clinical features of acute allergic reactions to peanut and tree nuts in children. Pediatrics. 1998;102(1):e6.
24. Bock SA, Atkins FM. The natural history of peanut allergy. J Allergy Clin Immunol. 1989;83(5):900-904.
25. Anagnostou K, Clark A. The management of peanut allergy. Arch Dis Child. 2015;100(1):68-72. doi: 10.1136/archdischild-2014-306152.
26. Bock SA, Muñoz-Furlong A, Sampson HA. Fatalities due to anaphylactic reactions to foods. J Allergy Clin Immunol. 2001;107(1):191-193. doi: 10.1067/mai.2001.112031.
27. Cherkaoui S, Ben-Shoshan M, Alizadehfar R, et al. Accidental exposures to peanut in a large cohort of Canadian children with peanut allergy. Clin Transl Allergy. 2015;5:16.
28. Sicherer SH, Sampson HA, Bock SA, Muñoz-Furlong A. Underrepresentation of the risk and incidence of anaphylaxis to foods. Arch Intern Med. 2001;161(16):2046-2047.
29. Sicherer SH, Furlong TJ, DeSimone J, Sampson HA. The US Peanut and Tree Nut Allergy Registry: characteristics of reactions in schools and day care. J Pediatr. 2001;138(4):560-565. doi: 10.1067/mpd.2001.111821.
30. Tang ML, Ponsonby AL, Orsini F, et al. Administration of a probiotic with peanut oral immunotherapy: a randomized trial. J Allergy Clin Immunol. 2015;135(3):737-744.e8. doi: 10.1016/j.jaci.2014.11.034.
31. Shaker MS. An economic analysis of a peanut oral immunotherapy study in children. J Allergy Clin Immunol Pract. 2017;5(6):1707-1716. doi: 10.1016/j.jaip.2017.04.016.
32. Blaiss MS, Tilles SA, Lieberman JA, et al. Limitations in current peanut oral immunotherapy (POIT) practices in the U.S. J Allergy Clin Immunol. 2018;141(suppl 2):AB259.
33. Togias A, Cooper SF, Acebal ML, et al. Addendum guidelines for the prevention of peanut allergy in the United States: report of the National Institute of Allergy and Infectious Diseases–sponsored expert panel. World Allergy Organ J. 2017;10(1):1. doi: 10.1186/s40413-016-0137-9.
34. Du Toit G, Roberts G, Sayre PH, et al; LEAP Study Team. Randomized trial of peanut consumption in infants at risk for peanut allergy. [published correction appears in N Engl J Med. 2016;375(4):398]. N Engl J Med. 2015;372(9):803-813. doi: 10.1056/NEJMoa1414850.
 
PDF
 
Copyright AJMC 2006-2019 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
x
Welcome the the new and improved AJMC.com, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up