Currently Viewing:
Supplements Reducing the Risk of Cardiovascular Disease in Patients With Diabetes
The Burden of Cardiovascular Disease in Patients with Diabetes
Brooke Hudspeth, PharmD, CDE
Currently Reading
Antihyperglycemic Medications for Cardiovascular Disease Risk Reduction
Jennifer D. Goldman, PharmD, RPh, CDE, BC-ADM, FCCP
Participating Faculty

Antihyperglycemic Medications for Cardiovascular Disease Risk Reduction

Jennifer D. Goldman, PharmD, RPh, CDE, BC-ADM, FCCP
Patients with T2D experience significant burdens to morbidity and mortality, with cardiovascular complications representing a substantial portion of this burden. Since 2008, the FDA has recommended that all novel antihyperglycemic agents undergo CVOTs to rule out any risk of contributing to cardiovascular events in these patients. While most agents undergoing CVOTs have achieved noninferiority, a few have shown superiority for cardiovascular events. These include the SGLT2 inhibitors empagliflozin and canagliflozin and the GLP-1 RAs liraglutide and semaglutide. Both empagliflozin and liraglutide have received an FDA-approved indication for reduction of cardiovascular events in patients with established CVD. Although these benefits exist, healthcare providers must individualize therapy for each patient, as many antihyperglycemic agents have black box warnings or tolerability issues. In addition to trials showing cardiovascular benefit (ie, SUSTAIN-6, LEADER, CANVAS, and EMPA-REG), several CVOTs are currently ongoing (eg, PIONEER, CREDENCE, DECLARE-TIMI, SCORED, VERTIS CV, CAROLINA, and CARMELINA) and results are expected in the next 1 to 2 years. It is important for healthcare providers to understand that many trials focus on showing a lack of harm rather than proving a benefit. Agents that have achieved noninferiority in CVOTs are recommended by clinical guidelines alongside beneficial agents and, oftentimes, other factors, such as risks for certain AEs, will dictate therapy selection. Healthcare providers must stay abreast of the potential benefits that these agents offer patients with T2D who are at high risk of cardiovascular events in order to optimize outcomes and reduce mortality

Author affiliation: Professor of Pharmacy Practice, School of Pharmacy–Boston MCPHS University, Boston, MA.
Funding source: This activity is supported by an educational grant from Boehringer Ingelheim Pharmaceuticals, Inc. and Lilly USA, LLC.
Author disclosure: Dr Goldman is a consultant for Becton Dickinson and serves on the speakers bureaus for Novo Nordisk and Sanofi.
Authorship information: Concept and design, acquisition of data, analysis and interpretation of data, drafting of the manuscript, and critical revision of the manuscript for important intellectual content.
Address correspondence to:
Medical writing and editorial support provided by: Rachel L. Brown, PharmD, MPH.
1. Regier EE, Venkat MV, Close KL. More than 7 years of hindsight: revisiting the FDA’s 2008 guidance on cardiovascular outcomes trials for type 2 diabetes medications. Clin Diabetes. 2016;34(4):173-180. doi: 10.2337/cd16-0005.
2. Marx N, McGuire DK, Perkovic V, et al. Composite primary end points in cardiovascular outcomes trials involving type 2 diabetes patients: should unstable angina be included in the primary end point? Diabetes Care. 2017;40(9):1144-1151. doi: 10.2337/dc17-0068.
3. Singh AK, Singh R. Recent cardiovascular outcome trials of antidiabetic drugs: a comparative analysis. Indian J Endocrinol Metab. 2017;21(1):4-10. doi: 10.4103/2230-8210.196026.
4. Gallo LA, Wright EM, Vallon V. Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences. Diabetes Vasc Dis Res. 2015;12(2):78-89. doi: 10.1177/1479164114561992.
5. American Diabetes Association. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes–2018. Diabetes Care. 2018;41(suppl 1):S73-S85. doi: 10.2337/dc18-S008.
6. Neeland I, de Albuquerque Rocha N, McGuire D. Cardiovascular effects of sodium glucose cotransporter 2 inhibitors: the search for the how and why–American College of Cardiology. American College of Cardiology website. Published 2016. Accessed May 11, 2018.
7. Bell RM, Yellon DM. SGLT2 inhibitors: hypotheses on the mechanism of cardiovascular protection. Lancet Diabetes Endocrinol. 2017;6(6):435-437. doi: 10.1016/S2213-8587(17)30314-5.
8. Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME Study? A unifying hypothesis. Diabetes Care. 2016;39(7):1115-1122. doi: 10.2337/dc16-0542.
9. Ferrannini E. Sodium-glucose co-transporters and their inhibition: clinical physiology. Cell Metab. 2017;26(1):27-38. doi: 10.1016/j.cmet.2017.04.011.
10. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644-657. doi: 10.1056/NEJMoa1611925.
11. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117-2128. doi: 10.1056/NEJMoa1504720.
12. Hirshberg B, Raz I. Impact of the U.S. Food and Drug Administration cardiovascular assessment requirements on the development of novel antidiabetes drugs. Diabetes Care. 2011;34(suppl 2):S101-S106. doi: 10.2337/dc11-s202.
13. Jardiance [prescribing information]. Ridgefield, CT: Boehringer Ingelheim Pharmaceuticals, Inc; 2017. Accessed May 11, 2018.
14. US Food and Drug Administration. FDA Drug Safety Communication: FDA confirms increased risk of leg and foot amputations with the diabetes medicine canagliflozin (Invokana, Invokamet, Invokamet XR). FDA website. Published May 6, 2017. Updated July 25, 2017. Accessed May 11, 2018.
15. Helfand C. ACC: waiting on the FDA’s heart-helping verdict, J&J shares more positive CV data for Invokana. FiercePharma website. Published March 11, 2018. Accessed May 11, 2018.
16. Cardiovascular Outcomes Following Ertugliflozin Treatment in Type 2 Diabetes Mellitus Participants With Vascular Disease, The VERTIS CV Study (MK-8835-004). Published November 19, 2013. Updated May 17, 2018. Accessed June 3, 2018.
17. Multicenter Trial to Evaluate the Effect of Dapagliflozin on the Incidence of Cardiovascular Events (DECLARE-TIMI58). Published November 21, 2012. Updated June 25, 2018. Accessed July 3, 2018.
18. Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2012;8(12):728-742. doi: 10.1038/nrendo.2012.140.
19. Zhao TC. Glucagon-like peptide-1 (GLP-1) and protective effects in cardiovascular disease: a new therapeutic approach for myocardial protection. Cardiovasc Diabetol. 2013;12(1):90. doi: 10.1186/1475-2840-12-90.
20. Garber AJ, Abrahamson MJ, Barzilay JI, et al. Consensus statement by the American Association
of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2
diabetes managmenet algorithm–2018 executive summary. Endocr Pract. 2018;24(1):91-120. doi: 10.4158/CS-2017-0153.
21. Strain WD, Smith C. Cardiovascular outcome studies in diabetes: how do we make sense of these new data? Diabetes Ther. 2016;7(2):175-185. doi: 10.1007/s13300-016-0165-z.
22. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311-322. doi: 10.1056/NEJMoa1603827.
23. Victoza [prescribing information]. Plainsboro, NJ: Novo Nordisk Inc; 2017. Accessed May 12, 2018.
24. Mann JFE, Ørsted DD, Brown-Frandsen K, et al. Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med. 2017;377(9):839-848. doi: 10.1056/NEJMoa1616011.
25. Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834-1844. doi: 10.1056/NEJMoa1607141.
26. Actos [prescribing information]. Deerfield, IL: Takeda Pharmaceuticals America, Inc; 2017. Accessed May 12, 2018.
27. Lincoff AM, Wolski K, Nicholls SJ, Nissen SE. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus. JAMA. 2007;298(10):1180-1188. doi: 10.1001/jama.298.10.1180.
28. Gaziano JM, Cincotta AH, O’Connor CM, et al. Randomized clinical trial of quick-release bromocriptine among patients with type 2 diabetes on overall safety and cardiovascular outcomes. Diabetes Care. 2010;33(7):1503-1508. doi: 10.2337/dc09-2009.
29. Chamarthi B, Ezrokhi M, Rutty D, Cincotta AH. Impact of bromocriptine-QR therapy on cardiovascular outcomes in type 2 diabetes mellitus subjects on metformin. Postgrad Med. 2016;128(8):761-769. doi: 10.1080/00325481.2016.1243003.
30. Stein SA, Lamos EM, Davis SN. A review of the efficacy and safety of oral antidiabetic drugs. Expert Opin Drug Saf. 2013;12(2):153-175. doi: 10.1517/14740338.2013.752813.
31. American Diabetes Association. Economic costs of diabetes in the U.S. in 2017. Diabetes Care. 2018;41(5):917-928. doi: 10.2337/dci18-0007.
32. Zheng SL, Roddick AJ, Aghar-Jaffar R, et al. Association between use of sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide 1 agonists, and dipeptidyl peptidase 4 inhibitors with all-cause mortality in patients with type 2 diabetes. JAMA. 2018;319(15):1580-1591. doi: 10.1001/jama.2018.3024.
33. US Food and Drug Administration. Sodium-glucose cotransporter-2 (SGLT2) inhibitors. Updated May 16, 2017. Accessed May 12, 2018.

Copyright AJMC 2006-2019 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
Welcome the the new and improved, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up