Although chronic obstructive pulmonary disease (COPD) remains a leading cause of death around the world, the reason for why patients with COPD lose the ability to repair damage to their lungs is poorly defined. However, researchers at the Helmholtz Zentrium München may now have an idea of why this happens.
Although chronic obstructive pulmonary disease (COPD) remains a leading cause of death around the world, the reason for why patients with COPD lose the ability to repair damage to their lungs is poorly defined. However, researchers at the Helmholtz Zentrium München may now have an idea of why this happens.
Research published in Journal of Experimental Medicine identify the molecule Wnt5a as the reason for irreversible damage to the alveoli that occurs as the disease progresses, airways narrow, and pulmonary emphysema develops. At this point, the body is unable to repair the destroyed air sacks, explained Melanie Königshoff, MD, PhD, head of the Research Unit Lung Repair and Regeneration at the Comprehensive Pneumology Center of Helmholtz Zentrum München.
"In our current work we have been able to show that COPD results in a change in the messengers that lung cells use to communicate with one another," Königshoff said in a statement.
According to the researchers, increased production of Wnt5a disrupts the Wnt/beta-catenin signaling pathway that would be responsible for repairing the damage. The study’s first author, Hoeke Baarsma, PhD, explained that their hypothesis was that there was an imbalance between Wnt messengers in patients with COPD. That meant searching for the interference.
"In both the pre-clinical model and the tissue samples from patients, we found that in COPD tissue particularly the non-canonical Wnt5a molecule is increased and occurs in a modified form,” said Baarsma.
Cigarette smoke and other stimuli that can cause a reaction in COPD increase the production of the Wnt5a molecule, thus resulting in impaired lung regeneration. The researchers went 1 step further and identified where the misdirected signal originates: cells in the connective tissue, the so-called fibroblasts. When Wnt5a derived from the fibroblasts were applied to pulmonary epithelial cells, they lost their ability to heal. In addition, using antibodies against the Wnt5a molecule actually slowed down lung destruction and better maintained lung function.
“Our results show that the classic Wnt/beta-catenin signal cascade is disrupted by the Wnt5a ligand,” said Königshoff. “This is a completely new mechanism in association with COPD and could lead to new therapeutic approaches, which are urgently needed for treatment.”
Understanding the Unmet Need for Therapies to Treat Rare Bile Duct Cancer
May 24th 2022On this episode of Managed Care Cast, we bring you an excerpt of an interview with a co-chair of the 2022 Cholangiocarcinoma Foundation (CCF) annual conference, held earlier this year, about the significant unmet therapy needs facing most patients with this rare cancer.
Listen
Gene Therapy Success in UK Likely Depends on Overcoming Education, Psychological Support Challenges
November 27th 2023Education, psychological support, and implementation guidance are the top unmet needs identified by investigators from the United Kingdom concerning gene therapy use for hemophilia.
Read More
A Look at Racial Disparities in US HPV Vaccine Uptake
March 1st 2022On this episode of Managed Care Cast, Leslie Cofie, PhD, MPH, an assistant professor of health education and promotion at the College of Health and Human Performance, East Carolina University, discusses his work on identifying and addressing racial disparities in human papillomavirus (HPV) vaccine uptake in the United States.
Listen