Currently Viewing:
The American Journal of Managed Care July 2010
Development and Pilot Testing of Guidelines to Monitor High-Risk Medications in the Ambulatory Setting
Jennifer Tjia, MD, MSCE; Terry S. Field, DSc; Lawrence D. Garber, MD; Jennifer L. Donovan, PharmD; Abir O. Kanaan, PharmD; Marsha A. Raebel, PharmD; Yanfang Zhao, MA; Jacquelyne C. Fuller, MPH; Shawn J. Gagne, BA; Shira H. Fischer, AB; and Jerry H. Gurwitz, MD
Racial/Ethnic and Age Disparities in Chemotherapy Selection for Colorectal Cancer
Nour A. Obeidat, PhD; Francoise G. Pradel, PhD; Ilene H. Zuckerman, PhD; James A. Trovato, PharmD, MBA, BCOP; Francis B. Palumbo, PhD, JD; Sylvain DeLisle, MD, MBA; and C. Daniel Mullins, PhD
Currently Reading
US Cost Burden of Ischemic Stroke: A Systematic Literature Review
Bart M. Demaerschalk, MD, MSc, FRCP(C); Ha-Mill Hwang, PharmD; and Grace Leung, MPH
Can Outpatient Pharmacy Data Identify Persons With Undiagnosed COPD?
Douglas W. Mapel, MD, MPH; Hans Petersen, MS; Melissa H. Roberts, MS; Judith S. Hurley, MS; Floyd J. Frost, PhD; and Jeno P. Marton, MD
Using the Lessons of Behavioral Economics to Design More Effective Pay-for-Performance Programs
Ateev Mehrotra, MD; Melony E. S. Sorbero, PhD, MS, MPH; and Cheryl L. Damberg, PhD
Cost-Effectiveness of Laparoscopic Gastric Banding and Bypass for Morbid Obesity
Joanna Campbell, PhD; Lisa J. McGarry, MPH; Scott A. Shikora, MD; Brent C. Hale, RPh; Jeffrey T. Lee, PhD; and Milton C. Weinstein, PhD
Screening Cardiac Surgery Patients for MRSA: An Economic Computer Model
Bruce Y. Lee, MD, MBA; Ann E. Wiringa, MPH; Rachel R. Bailey, MPH; Vishal Goyal, MPH; G. Jonathan Lewis, DO, MPH; Becky Y. K. Tsui, MPH; Kenneth J. Smith, MD, MS; and Robert R. Muder, MD
Diabetes Disease Management in Medicare Advantage Reduces Hospitalizations and Costs
James L. Rosenzweig, MD; Michael S. Taitel, PhD; Gordon K. Norman, MD, MBA; Tim J. Moore, MD, MS; Wendy Turenne, MS; and Pei Tang, MS, MA
Mometasone Furoate Versus Beclomethasone Dipropionate: Effectiveness in Patients With Mild Asthma
Howard S. Friedman, PhD, MMS; Eduardo Urdaneta, MD; John M. McLaughlin, PhD; and Prakash Navaratnam, RPh, MPH, PhD

US Cost Burden of Ischemic Stroke: A Systematic Literature Review

Bart M. Demaerschalk, MD, MSc, FRCP(C); Ha-Mill Hwang, PharmD; and Grace Leung, MPH

Effective preventive treatments, early critical care, and multi-disciplinary rehabilitative strategies for stroke will reduce the national expenditure for stroke-related healthcare services.

In the study by Leibson and colleagues,20 total inpatient and outpatient charges during the 12-month poststroke period were reported to be 3.4 times higher than those in the 12-month prestroke period. The analyses by Samsa and colleagues,14 Lipscomb and colleagues,26 and Sloss and colleagues25 have shown that the total stroke-related costs are highest during months 1 to 3 after a stroke. Taylor and colleagues7 reported direct cost of ischemic stroke per person during the first year in 1990 of approximately $15,102 to $20,574, depending on age. Fagan and colleagues16 estimated a mean cost (converted to 1996 dollars) nearing $30,000 for year 1 and approximately $60,000 as total cost (ie, short-term plus long-term care for the treatment of patients with acute ischemic stroke). Lee and colleagues8 reported an average Medicare expenditure of $39,396 (in 1997 dollars) from the initial event through 4 years in patients identified as having acute ischemic stroke. These data emphasize the need for effective preventive and early critical care.8

Indirect Costs. The majority of lifetime costs for each type of stroke results from indirect costs. Indirectcosts are a result of premature mortalityand reduced productivity for stroke survivors.7 In the study by Taylor and colleagues,7 indirect costs accounted for 58% ($23.6 billion) of lifetime stroke costs in the United States. Lost earnings owing to premature mortality accountedfor 56% of total indirect costs, and the remainder was a result of lost earnings for stroke survivors.7A cost analysis study by Brown and colleagues27 provided a projected breakdown of indirect costs (lost earnings and informal care) as well as direct costs caused by ischemic stroke (from 2005 to 2050) in non-Hispanic whites, African Americans, and Hispanics. Informal care refers to in-home assistance with activities of daily living as provided by a relative or unpaid nonrelative not associated with an organization.28 The single largest contributor to overall costs in all race/ethnic groups was lost earnings (33%, 43%, and 30%, respectively), and the second largest contributor to overall costs was informal caregiving (19%, 16%, and 19%).27

Aggregate Lifetime Costs. The US aggregate lifetime cost of first strokes was estimated to be $40.6 billion by Taylor and colleagues in 1990,7 with ischemic stroke accounting for $29 billion. Short-term care costs incurred in the first 2 years after a stroke (45%), long-term ambulatory care (35%), and nursing home costs (17.5%) constituted the major expenditure groups.7 The mean lifetime cost of ischemic stroke was estimated at nearly $91,000 in 1990 dollars.7 Lifetime cost of stroke per person was calculated as thesum of direct and indirect costs, while aggregate lifetime cost of strokewas calculated by multiplying the per personlifetime cost by the estimated incidence of first strokes in 1990.7 TheAmerican Heart Association estimated the direct medical and indirect expenditures attributable to stroke in 2008 as $65.5 billion and the mean lifetime cost of ischemic stroke, which included inpatient care, rehabilitation, and follow-up care, as $140,048 (converted to 1999 dollars).1 Brown and colleagues27 projected the US costs of ischemic stroke from 2005 to 2050 (in 2005 dollars) to be approximately $2.2 trillion; $1.52 trillion for non-Hispanic whites, $313 billion for Hispanics, and $379 billion for African Americans. The projected proportion of indirect and direct costs of ischemic stroke by ethnic group is presented the eAppendix B, available at proposed figures likely underestimate the true burden of stroke, because the estimates do not take into account the rise in salaries and treatment costs, growth among minority populations, and the increase in risk factors for stroke such as obesity, diabetes, and heart disease.

It should be noted that the SIGN grading system was used in this literature review to rank economic studies, although it was designed to grade levels of evidence and evidence-based clinical studies and as such may not be a reliable instrument for assessing economic studies. Nonetheless, stroke presents a substantial burden on the healthcare system as well as on patients, family, and society.7 The majority of the literature addressing stroke-related costs focuses on short-term, in-hospital expenditures, with costs ranging from approximately $8000 to $23,000 (adjusted to 2008 dollars), depending on the length of hospital stay. Also, the literature search did not identify studies that determined the cost of stroke rehabilitation care. In contrast, there is a relative scarcity of quality studies focusing on the long-term components of direct stroke-related medical expenses, which are substantial. For example, in the study by Taylor and colleagues,7 long-term ambulatory care accounted for 35% and nursing homecosts accounted for 17.5% of total direct costs of stroke. In 1990 alone, there were more than 100,000 stroke-related nursing home admissions with a mean length of stay of 432 days,7 and in 1993 the annual cost for nursing home care based on a study of long-term care US insurers was $20,000 to $50,000.16These data emphasize the need for further studies that would examine the long-term components of stroke-related medical costs. Additionally, almost all of the studies citing short-term and long-term costs were from the 1990s, highlighting the need for more current data on the costs of stroke.

Those long-term expenses are estimated to be substantial. Assuming 3% yearly inflation from 2008, total direct and indirect costs of stroke in the United States would be $108 billion in 2025,1 and per the cost-analyses study by Brown and colleagues,27 the total cost of stroke from 2005 to 2050 is projected to be $2.2 trillion. These cost projections for stroke are comparable to those for other high-impact chronic diseases such as cancer and cardiovascular disease. The annual productivity loss from cancer mortality is projected to be $308 billion in 2020, while the cost associated with cancer-related deaths is expected to be $1.47 trillion in 2020.29,30The total cost of heart disease is projected to be $149 billion in 2025.31

Direct and indirect costs associated with stroke can be reduced by wider utilization of improved strategies for stroke care. rt-PA (Activase), approved in 1996 by the US Food and Drug Administration (FDA), has remained the only FDA-approved drug that is indicated for improving neurologic recovery and reducing the incidence of disability in adults with acute ischemic stroke.32 Additionally, there have been numerous cost-effectiveness studies of rt-PA, including that by Fagan and colleagues,16 which showed a decrease in rehabilitation costs of $1.4 million and nursing home costs of $4.8 million per 1000 eligible rt-PA–treated patients. More recently, other improved treatment strategies include the establishment of primary stroke centers and stroke center matrices that encompass multidisciplinary specialized stroke teams,33-35 stroke telemedicine via state-of-the-art video telecommunications and Internet-based consultative modalities for healthcare professionals and patients mainly in underserved urban and rural areas,36-39 and expansion of the rt-PA treatment time window.40 However, further studies are required to quantify the cost-effectiveness or cost savings of these interventions independently, and when combined in regional strategies and community networks of stroke care.

Acknowledgments We gratefully acknowledge Shilpa Lalchandani, PhD, Embryon, for assistance with the revisions and further development of the manuscript based on critical comments and direction from all authors; Susan Hogan, PhD, Embryon, for reviewing the manuscript for scientific accuracy; and Vicki Blasberg, Embryon, for managing the coordination of manuscript development and submission.


Author Affiliations: From the Department of Neurology (BMD), Mayo Clinic Hospital, Phoenix, AZ; and Genentech, Inc (HMH, GL), South San Francisco, CA.


Funding Source: Genentech, Inc, South San Francisco, CA, provided funding for editorial assistance to Embryon for editing, proofreading, and reference verification.


Author Disclosure: Dr Demaerschalk is the principal investigator (PI) for STRokE DOC AZ TIME (Arizona Department of Health Service [ADHS]) and Stroke Telemedicine for Arizona Rural Residents (ADHS); the site PI for Interventional Management of Stroke III (IMS III; National Institutes of Health [NIH]), Stenting and Aggressive Medical Management for Preventing Recurrent Stroke (SAMMPRIS; NIH), Secondary Pre-vention of Small Subcortical Strokes (SPS3; NIH), Carotid Revascularization Endarterectomy vs. Stenting Trial (CREST; NIH), Randomized Evaluation of Recurrent Stroke Comparing PFO Closure to Established Current Standard of Care Treatment (RESPECT; AGA Medical Corpora-tion), V10153 Acute Stroke Thrombolysis Trial (VASTT; Vernalis), Ancrod Stroke Program (ASP, Neurobiological Technology), and MP-124-A07 Trial (Mitsubishi Pharma); a co-investigator for ALbumin In Acute Stroke (ALIAS; NIH), CHOICE (Abbott), and ACT I (Abbott); a steering commit-tee member for SPS3, ASP, and VASTT; a Data Safety Monitoring Board member for IN-STEP (Vernalis); medical monitor for Neuralieve; and an event adjudicator for Axio Research. He reports no other consultancies, honoraria, speaker bureau memberships, employment relationships, or stocks. Ms Leung is an employee of Genentech, the company that funded this work. Dr Hwang was an employee of Genentech at the time this study was developed. She is now with the University of California San Francisco, San Francisco, CA. The opinions expressed in the current article are those of the authors. The authors received no honoraria or other form of financial support re-lated to the development of this manuscript.


Authorship Information: Concept and design (BMD, HMH, GL); acquisition of data (BMD, HMH, GL); analysis and interpretation of data (BMD, HMH, GL); drafting of the manuscript (BMD, GL); and critical revision of the manuscript for important intellectual content (BMD, HMH, GL).


Address correspondence to: Bart M. Demaerschalk, MD, MSc, FRCP(C), Department of Neurology, Mayo Clinic Hospital, 5777 E Mayo Blvd, Phoenix, AZ 85054. E-mail:

1. American Heart Association. Heart Disease and Stroke Statistics—2008 Update. Dallas, TX: American Heart Association; 2008.

2. American Cancer Society. Cancer Facts & Figures 2008. Atlanta, GA: American Cancer Society, Inc; 2008.

3. American Diabetes Association. Economic costs of diabetes in the U.S. in 2007 [published correction appears in Diabetes Care. 2008;31(6):1271]. Diabetes Care. 2008;31(3):596-615.

4. Greenberg PE, Kessler RC, Birnbaum HG, et al. The economic burden of depression in the United States: how did it change between 1990 and 2000? J Clin Psychiatry. 2003;64(12):1465-1475.

5. O’Brien BJ, Heyland D, Richardson WS, Levine M, Drummond MF. Users’ guides to the medical literature. XIII. How to use an article on economic analysis of clinical practice. B. What are the results and will they help me in caring for my patients? Evidence-Based Medicine Working Group. JAMA. 1997;277(22):1802-1806.

6. Harbour R, Miller J; for the Scottish Intercollegiate Guidelines Network Grading Review Group. A new system for grading recommendations in evidence based guidelines. BMJ. 2001;323(7308):334-336.

7. Taylor TN, Davis PH, Torner JC, Holmes J, Meyer JW, Jacobson MF. Lifetime cost of stroke in the United States. Stroke. 1996;27(9):1459-1466.

8. Lee WC, Christensen MC, Joshi AV, Pashos CL. Long-term cost of stroke subtypes among Medicare beneficiaries. Cerebrovasc Dis. 2007;23(1):57-65.

9. Katzan IL, Dawson NV, Thomas CL, Votruba ME, Cebul RD. The cost of pneumonia after acute stroke. Neurology. 2007;68(22):1938-1943.

10. Qureshi AI, Suri MF, Nasar A, et al. Changes in cost and outcome among US patients with stroke hospitalized in 1990 to 1991 and those hospitalized in 2000 to 2001. Stroke. 2007;38(7):2180-2184.

11. Reed SD, Cramer SC, Blough DK, Meyer K, Jarvik JG. Treatment with tissue plasminogen activator and inpatient mortality rates for patients with ischemic stroke treated in community hospitals. Stroke. 2001;32(8):1832-1840.

12. Caro JJ, Huybrechts KF, Duchesne I. Management patterns and costs of acute ischemic stroke: an international study. For the Stroke Economic Analysis Group. Stroke. 2000;31(3):582-590.

13. Gillum LA, Johnston SC. Characteristics of academic medical centers and ischemic stroke outcomes. Stroke. 2001;32(9):2137-2142.

14. Samsa GP, Bian J, Lipscomb J, Matchar DB. Epidemiology of recurrent cerebral infarction: a Medicare claims–based comparison of first and recur-rent strokes on 2-year survival and cost. Stroke. 1999;30(2):338-349.

15. Diringer MN, Edwards DF, Mattson DT, et al. Predictors of acute hospital costs for treatment of ischemic stroke in an academic center. Stroke. 1999;30(4):724-728.

16. Fagan SC, Morgenstern LB, Petitta A, et al. Cost-effectiveness of tissue plasminogen activator for acute ischemic stroke. NINDS rt-PA Stroke Study Group. Neurology. 1998;50(4):883-890.

17. Newell SD Jr, Englert J, Box-Taylor A, Davis KM, Koch KE. Clinical efficiency tools improve stroke management in a rural southern health system. Stroke. 1998;29(6):1092-1098.

18. Holloway RG, Witter DM Jr, Lawton KB, Lipscomb J, Samsa G. Inpatient costs of specific cerebrovascular events at five academic medical centers. Neurology. 1996;46(3):854-860.

19. Alberts MJ, Bennett CA, Rutledge VR. Hospital charges for stroke patients. Stroke. 1996;27(10):1825-1828.

20. Leibson CL, Hu T, Brown RD, Hass SL, O’Fallon WM, Whisnant JP. Utilization of acute care services in the year before and after first stroke: a popu-lation-based study. Neurology. 1996;46(3):861-869.

21. Monane M, Kanter DS, Glynn RJ, Avorn J. Variability in length of hospitalization for stroke. The role of managed care in an elderly population. Arch Neurol. 1996;53(9):875-880.

22. Wentworth DA, Atkinson RP. Implementation of an acute stroke program decreases hospitalization costs and length of stay. Stroke. 1996;27(6):1040-1043.

23. Demaerschalk BM, Durocher DL. How diagnosis-related group 559 will change the US Medicare cost reimbursement ratio for stroke centers. Stroke. 2007;38(4):1309-1312.

24. Kind AJ, Smith MA, Liou JI, Pandhi N, Frytak JR, Finch MD. The price of bouncing back: one-year mortality and payments for acute stroke patients with 30-day bounce-backs. J Am Geriatr Soc. 2008;56(6):999-1005.

25. Sloss EM, Wickstrom SL, McCaffrey DF, et al. Direct medical costs attributable to acute myocardial infarction and ischemic stroke in cohorts with atherosclerotic conditions. Cerebrovasc Dis. 2004;18(1):8-15.

26. Lipscomb J, Ancukiewicz M, Parmigiani G, Hasselblad V, Samsa G, Matchar DB. Predicting the cost of illness: a comparison of alternative models applied to stroke. Med Decis Making. 1998;18 (2 suppl):S39-S56.

27. Brown DL, Boden-Albala B, Langa KM, et al. Projected costs of ischemic stroke in the United States. Neurology. 2006;67(8):1390-1395.

28. Hickenbottom SL, Fendrick AM, Kutcher JS, Kabeto MU, Katz SJ, Langa KM. A national study of the quantity and cost of informal caregiving for the elderly with stroke. Neurology. 2002;58(12):1754-1759.

29. Bradley CJ, Yabroff KR, Dahman B, Feuer EJ, Mariotto A, Brown ML. Productivity costs of cancer mortality in the United States: 2000-2020. J Natl Cancer Inst. 2008;100(24):1763-1770.

30. Yabroff KR, Bradley CJ, Mariotto AB, Brown ML, Feuer EJ. Estimates and projections of value of life lost from cancer deaths in the United States. J Natl Cancer Inst. 2008;100(24):1755-1762.

31. Steinwachs DM, Collins-Nakai RL, Cohn LH, Garson A Jr, Wolk MJ. The future of cardiology: utilization and costs of care. J Am Coll Cardiol. 2000;35(5 suppl B):91B-98B.

32. Activase [prescribing information]. South San Francisco, CA: Genentech, Inc; 2005.

33. Alberts MJ, Hademenos G, Latchaw RE, et al. Recommendations for the establishment of primary stroke centers. The Brain Attack Coalition. JAMA. 2000;283(23):3102-3109.

34. Wein TH, Hickenbottom SL, Alexandrov AV. Thrombolysis, stroke units and other strategies for reducing acute stroke costs. Pharmacoeconomics. 1998;14(6):603-611.

35. Demaerschalk BM, Bobrow BJ, Paulsen M; Phoenix Operation Stroke Executive Committee. Development of a metropolitan matrix of primary stroke centers: the Phoenix experience. Stroke. 2008;39(4): 1246-1253.

36. Levine SR, Gorman M. “Telestroke”: the application of telemedicine for stroke. Stroke. 1999;30(2):464-469.

37. Schwamm LH, Holloway RG, Amarenco P, et al; American Heart Association Stroke Council; Interdisciplinary Council on Peripheral Vascular Disease. A review of the evidence for the use of telemedicine within stroke systems of care: a scientific statement from the American Heart Associa-tion/American Stroke Association. Stroke. 2009;40(7):2616-2634.

38. Schwamm LH, Audebert HJ, Amarenco P, et al; American Heart Association Stroke Council; Council on Epidemiology and Prevention; Inter-disciplinary Council on Peripheral Vascular Disease; Council on Cardiovascular Radiology and Intervention. Recommendations for the implementa-tion of telemedicine within stroke systems of care: a policy statement from the American Heart Association. Stroke. 2009;40(7):2635-2660.

39. Demaerschalk BM, Miley ML, Kiernan TE, et al; STARR Coinvestigators. Stroke telemedicine [published correction appears in Mayo Clin Proc. 2010;85(4):400]. Mayo Clin Proc. 2009;84(1):53-64.

40. del Zoppo GJ, Saver JL, Jauch EC, Adams HP Jr; American Heart Association Stroke Council. Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator: a science advisory from the American Heart Association/American Stroke Association. Stroke. 2009;40(8):2945-2948.

Copyright AJMC 2006-2018 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
Welcome the the new and improved, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up