Currently Viewing:
The American Journal of Managed Care March 2012
Adherence and Dosing Frequency of Common Medications for Cardiovascular Patients
Jay P. Bae, PhD; Paul P. Dobesh, PharmD; Donald G. Klepser, PhD, MBA; Johnna D. Anderson, MS; Anthony J. Zagar, MS; Patrick L. McCollam, PharmD; and Molly E. Tomlin, MS
Reducing Long-Term Cost by Transforming Primary Care: Evidence From Geisinger's Medical Home Model
Daniel D. Maeng, PhD; Jove Graham, PhD; Thomas R. Graf, MD; Joshua N. Liberman, PhD; Nicholas B. Dermes, BS; Janet Tomcavage, RN, MSN; Duane E. Davis, MD; Frederick J. Bloom Jr, MD, MMM; and Glenn D. Steele Jr, MD, PhD
What Determines Successful Implementation of Inpatient Information Technology Systems?
Joanne Spetz, PhD; James F. Burgess, Jr, PhD; and Ciaran S. Phibbs, PhD
IT-Enabled Systems Engineering Approach to Monitoring and Reducing ADEs
Ranjit Singh, MD; Diana Anderson, EdM; Elizabeth McLean-Plunkett, MA; Ron Brooks, BS; Angela Wisniewski, PharmD; Nikhil Satchidanand, PhD; and Gurdev Singh, PhD
The Promise and Peril of Healthcare Forecasting
J. Frank Wharam, MB, BCh, BAO, MPH; and Jonathan P. Weiner, DrPH
Impact of an Online Prescription Management Account on Medication Adherence
John G. Hou, PhD; Patricia Murphy, MPH; Andrew W. Tang, MS; Nikhil Khandelwal, PhD; Ian Duncan, FSA, FIA, FCIA, MAAA; and Cheryl L. Pegus, MD, MPH
Optimal Approach to Improving Trauma Triage Decisions: A Cost-Effectiveness Analysis
Deepika Mohan, MD, MPH; Amber E. Barnato, MD, MPH, MS; Matthew R. Rosengart, MD, MPH; Derek C. Angus, MD, MPH, FRCP; and Kenneth J. Smith, MD, MS
Currently Reading
Healthcare Continuity From Hospital to Territory in Lombardy: TELEMACO Project
Palmira Bernocchi, BsC, PhD; Simonetta Scalvini, MD; Caterina Tridico, MD; Gabriella Borghi, BEcon; Paolo Zanaboni, Eng PhD; Cristina Masella, Eng PhD; Fulvio Glisenti, MD; and Maurizio Marzegalli, MD
Clinical Pathways for Oncology: More Rigor Needed When Evaluating Models
Bruce Feinberg, DO; and Jeffrey Scott, MD

Healthcare Continuity From Hospital to Territory in Lombardy: TELEMACO Project

Palmira Bernocchi, BsC, PhD; Simonetta Scalvini, MD; Caterina Tridico, MD; Gabriella Borghi, BEcon; Paolo Zanaboni, Eng PhD; Cristina Masella, Eng PhD; Fulvio Glisenti, MD; and Maurizio Marzegalli, MD
The TELEMACO project successfully used telemedicine to establish a healthcare continuity from hospital to territory in remote areas of the Lombardy region of Italy.
Objectives: To verify implementation and use of TELEMACO (TELEMedicina Ai piccoli COmunilombardi; http://www.telemaco.regione.lombardia.it/), which provides specialized continuity of care with innovative healthcare services in remote areas of the Lombardy region of Italy; to design a network in the territory for sharing of continuityof- care programs; and to allow the relevant health authorities to collect cost data to establish a model for sustainable pricing for implementing these services.


Methods: TELEMACO provides home-based telemanagement services for patients with chronic heart failure and chronic obstructive pulmonary disease (COPD), as well as second-opinion teleconsultations in cardiology, dermatology, diabetology, and pulmonology for general practitioners and second-opinion teleconsultations on digital images in cases of traumatic brain injury and stroke. A total of 2 service centers, 10 cardiology and pneumology departments, 30 specialists, 176 general practitioners, 40 nurses, 2 emergency departments, and 2 consultant hospitals were involved.


Results: A total of 166 patients with chronic heart failure and 474 patients with COPD were enrolled. There were 4830, 51, and 44 second-opinion teleconsultations for cardiologic, dermatologic, and diabetic conditions, respectively. There were 147 second-opinion teleconsultations on digital images, 68 for stroke, and 79 for traumatic brain injury. Implementation of TELEMACO introduced innovations in working methods and provided evidence to the health authorities for allocating funds for such services.


Conclusions: TELEMACO provided evidence that there is a growing need for home management of patients using telemedicine, a common and efficacious approach that can ensure care continuity, especially in chronic diseases.


(Am J Manag Care. 2012;18(3):e101-e108)
  •  The TELEMACO project enabled structured management of patients with chronic heart failure and chronic obstructive pulmonary disease who lived in remote areas of the Lombardy region of Italy.

  •  TELEMACO demonstrated the potential of telemedicine to support general practitioners in management of cardiologic conditions.

  •  TELEMACO also allowed development of innovative medical and nursing skills that are becoming part of the routine medical care practice.

  •  Overall evaluation of services showed that more than 95% of patients had a degree of satisfaction with the project.
Use of information and communication technology has rapidly increased worldwide and has contributed significantly to the clinical and health delivery sectors.1 Information and communication technology provides medical care to patients who have poor access to hospitals while at the same time ensuring continuity of care and optimal use of the available health resources.2-5

Telemedicine (TM) is widely implemented in rural communities, where residents face factors that can create disparities and difficulties in provisions of healthcare.6,7 The primary benefit of TM in these areas lies in facilitating remote access to healthcare and reducing cost of access, thus promoting better outcomes.8-10 Moreover, an aging population, a group in whom the incidence of chronic or degenerative diseases tends to increase, can also benefit from TM since TM can provide more efficient, prompt, and appropriate diagnostic and therapeutic services.

Our project, entitled TELEMACO (TELEMedicina Ai piccoli COmuni lombardi; http://www.telemaco.regione.lombardia.it/), is an assignment pursuant to regional Law 11/2004: “Measures to support the small municipalities of Lombardy aimed at counteracting the depopulation of the territory.” This law was developed to provide specialized continuity of care with innovative healthcare services in remote areas of the region.

The aims of the project were 3-fold: (1) to implement and use continuity-of-care services in the Lombardy region of Italy; (2) to design a network in the territory for sharing continuity-of-care programs for the management of chronic diseases; and (3) to allow the health authority of the Lombardy region to collect data to establish sustainable pricing at the regional health level for implementing TM.

MATERIAL AND METHODS

Territories with socioeconomic and infrastructural difficulties were selected within the rural areas of the Lombardy region, in conjunction with local health authorities and hospitals. Three study programs were introduced, as detailed below.

Home-Based Telemanagement for Patients With Chronic Heart Failure or Chronic Obstructive Pulmonary Disease

The methods were extensively described in previous articles.11-13 In brief, the chronic heart failure (CHF) group consisted of patients with New York Heart Association (NYHA) class II-IV left ventricular systolic dysfunction with ejection fraction less than 40% or CHF with diastolic dysfunction, with at least 1 episode of hospitalization for CHF within previous 6 months. The chronic obstructive pulmonary disease (COPD) group consisted of patients with stage III-IV COPD according to Global Initiative for Chronic Obstructive Lung Disease guidelines who received long-term oxygen therapy at home for at least 3 months, or were treated in hospital, in the outpatient setting, or in the emergency department for respiratory failure. Patients who could not be discharged from the hospital and those with severe cognitive impairment or other diseases with poor prognosis were excluded.

All patients were screened for eligibility before hospital discharge and all provided informed consent.

Before discharge from the hospital all patients were given instruction on their respective disease conditions (CHF or COPD). Patients were given pointers for recognizing signs and symptoms of decompensation/worsening. Patients with CHF were provided with a portable 1-lead electrocardiogram (ECG) device (Card-Guard 2206). Patients with COPD received a pulse oximeter (Vitalaire, Italy) device.

The home-based telemanagement (HBT) service was organized with a 6-month follow-up, with the possibility of readmission to the service for an additional 6 months. It consisted of scheduled calls done by a nurse and occasional calls done by patients. During the scheduled calls, the nurse carried out a scheduled standardized interview on the general clinical condition of the patients, including the names and the doses of prescribed drugs and patient compliance. During these calls the nurse reinforced the initial educational intervention and the strategies offered to improve the patient’s compliance. Occasional calls were made by patients in case of symptoms or signs of possible decompensation/worsening.

During either scheduled or occasional calls, CHF patients could transmit via landline or mobile phone the recording  from the 1-lead ECG to a service center, and talk to the nurse or doctor 24 hours a day, 7 days a week. The COPD patients were not required to transmit any data.

Both at the beginning and at the end of the program, on an outpatient basis, a clinical evaluation together with instrumental analyses such as an echocardiogram and a 6-minute walking test in CHF patients and hemogasanalysis in COPD patients were performed. Moreover, patients were asked to complete a qualityof- life questionnaire (ie, the Minnesota Living Heart Failure Questionnaire14 and the Saint George Questionnaire15 for CHF and COPD patients, respectively). Satisfaction was assessed by a questionnaire prepared ad hoc for the project.

Second Opinion for General Practitioners in Cardiology, Dermatology, Diabetology, and Pulmonology

The method has been described in detail in a previous work.16 The service was provided to general practitioners (GPs) working in rural areas of the Lombardy region through a service center during daily in-office or home visits. For cardiac problems, GPs were equipped with a 12-lead ECG device (Card-Guard 7100, Rehovot, Israel) that could be interfaced to a landline or mobile telephone, thus transferring in real time the recorded ECG tracing back to the receiving station. 17 For dermatologic problems, the doctors used a highresolution digital camera. The GPs transmitted the images by electronic mail to the service center. Problems related to diabetology and/or pulmonology were addressed by a telephone contact only.

The service center was implemented for cardiac consultation 24 hours a day, 7 days a week. For the other specialties, the service center was implemented from Monday to Friday from 8:00 am to 8:00 pm. Cardiology, pulmonology, and diabetology teleconsultations were performed in real time, while dermatology teleconsultations were performed within 30 minutes. All conversations with health professionals were recorded.

Second Opinion on Digital Images for Traumatic Brain Injury and Stroke Between Rural Hospitals and Specialized Hospitals

Two centers, each referring to a consultant hospital, were activated. Those patients who arrived at the emergency department with signs or symptoms of suspected traumatic brain injury or stroke were enrolled.

After documenting the patient’s information and the severity scale adopted (National Institutes of Health Stroke Scale18 or Glasgow Coma Scale19) in the patient’s health record, the emergency department physician sent the images (computed tomography) to the specialists at the reference hospital (neuroradiologist, neurologist, or neurosurgeon) and asked for a teleconsultation. The consulting physician had access to the images and data, and could give his/her diagnostic and therapeutic indications. Expert opinion was available within 30 minutes of arrival of images.

The 2 service centers offered technological support for transmitting the relevant medical data and management of clinical data that were collected. Service centers offered telephone clinical support overnight and during holidays, managed by professional staff (expert nurses and specialists) connected via telework.20 In addition, service centers provided training courses to all professionals involved.

During the study, field training programs (clinical audit/training activities) were organized. Training of health professionals included face-to-face classes and audioconferences to provide theoretical and practical knowledge on the basics of TM, associated technologies, sending data and tracings, and filling in the personal health record of the patient. An overview of the application models was also provided, together with information on the overall organization of the system and service model, types of requests, and responses to the teleconsultation. In addition, education on the care of patients with cardiac or respiratory diseases was provided.21

Efficacy Measures

The outcome measures for the 3 project programs were the following:

1. Assessment of the extent of TELEMACO services. This issue was addressed by evaluating the number of patients enrolled in the HBT program. The diffusion of HBT services for CHF and COPD patients was assessed in a single area of the Lombardy region (Valle Camonica). For CHF, the number of patients enrolled in the HBT program was compared with the number of patients enrolled in the HBT in Valle Camonica. For evaluating the diffusion of HBT, the total number of patients hospitalized in Valle Camonica represented the total population that could potentially access the HBT service. For COPD, the prevalence of disease in the territory (3% of the population has COPD, calculated as shown at www.goldcopd.it) was compared with the percentage of the patients enrolled in the HBT program.

2. A ssessment of TELEMACO network. This assessment was done by evaluating the organization of the integrated services across the Lombardy territories.

3. Acceptance of TELEMACO services by the regional authorities. This assessment was done by determining whether a system of reimbursement for the services provided could be implemented by the regional authorities after the project was completed.

Statistical Analysis

Data are expressed as numbers, percentages, or means ± SD. A Wilcoxon test for paired data was used to assess significance of the improvement of clinical parameters.

RESULTS

Assessment of the Extent of TELEMACO Services

Figure 1 shows the areas involved in the project of the Lombardy region and indicates for each area the number of patients and relevant teleconsultations.

Home-Based Telemanagement for Patients With CHF or COPD

A total of 10 cardiology and 7 pulmonology departments that carried out HBT for CHF and COPD patients were involved.

A total of 166 patients with CHF were included (mean age 69 ± 13 years, 70% male), 62% of whom were diagnosed with CHF 6 months before TELEMACO, with the remaining 38% in the preceding 6 to 48 months. At enrollment, 13%, 82%, and 5% of patients were in NYHA class II, III, and IV, respectively; 58% of patients had at least 1 comorbidity, in particular diabetes, COPD, and chronic renal insufficiency. During the HBT intervention (193 ± 53 days), the planned telephone contacts averaged 1.2 per patient per week. During the program, there were 46 hospitalizations, 50% of which were for cardiovascular reasons. At the end of the 6-month program, improvement of the clinical conditions of the patients was observed: they actually were more stable when discharged from the program (Table 1).

A total of 474 patients with COPD (mean age 72 ± 8 years, 76% male) were included: 72% ex-smokers, 16% current smokers, 26% obese, and 36% overweight. During the HBT intervention (179 ± 45 days), the planned telephone contacts averaged 1.1 per patient per week. During the program, there were 83 hospitalizations, 47% of which were for pulmonology reasons.

 
Copyright AJMC 2006-2018 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
x
Welcome the the new and improved AJMC.com, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up