Currently Viewing:
The American Journal of Managed Care June 2014
Comparison Between Guideline-Preferred and Nonpreferred First-Line HIV Antiretroviral Therapy
Stephen S. Johnston, MA; Timothy Juday, PhD; Amanda M. Farr, MPH; Bong-Chul Chu, PhD; and Tony Hebden, PhD
The Value of Specialty Pharmaceuticals - A Systematic Review
Martin Zalesak, MD, PhD; Joyce S. Greenbaum, BA; Joshua T. Cohen, PhD; Fotios Kokkotos, PhD; Adam Lustig, MS; Peter J. Neumann, ScD; Daryl Pritchard, PhD; Jeffrey Stewart, BA; and Robert W. Dubois, MD
Health Insurance and Breast-Conserving Surgery With Radiation Treatment
Askal Ayalew Ali, MA; Hong Xiao, PhD; and Gebre-Egziabher Kiros, PhD
Patient-Centered Medical Home and Quality Measurement in Small Practices
Jason J. Wang, PhD; Chloe H. Winther, BA; Jisung Cha, PhD; Colleen M. McCullough, MPA; Amanda S. Parsons, MD, MBA; Jesse Singer, DO, MPH; and Sarah C. Shih, MPH
Impact of a Patient Incentive Program on Receipt of Preventive Care
Ateev Mehrotra, MD; Ruopeng An, PhD; Deepak N. Patel, MBBS; and Roland Sturm, PhD
Novel Predictive Models for Metabolic Syndrome Risk: A "Big Data" Analytic Approach
Gregory B. Steinberg, MB, BCh; Bruce W. Church, PhD; Carol J. McCall, FSA, MAAA; Adam B. Scott, MBA; and Brian P. Kalis, MBA
Primary Care Diabetes Bundle Management: 3-Year Outcomes for Microvascular and Macrovascular Events
Frederick J. Bloom Jr, MD; Xiaowei Yan, PhD; Walter F. Stewart, PhD; Thomas R. Graf, MD; Tammy Anderer, PhD; Duane E. Davis, MD; Steven B. Pierdon, MD; James Pitcavage, MS; and Glenn D. Steele Jr, MD
Association of Electronic Health Records With Cost Savings in a National Sample
Abby Swanson Kazley, PhD; Annie N. Simpson, PhD; Kit N. Simpson, DPH; and Ron Teufel, MD
Learning About 30-Day Readmissions From Patients With Repeated Hospitalizations
Jeanne T. Black, PhD, MBA
Removing a Constraint on Hospital Utilization: A Natural Experiment in Maryland
Noah S. Kalman, MD; Bradley G. Hammill, MS; Robert B. Murray, MA, MBA; and Kevin A. Schulman, MD
Using Clinically Nuanced Cost Sharing to Enhance Consumer Access to Specialty Medications
Jason Buxbaum, MHSA; Jonas de Souza, MD; and A. Mark Fendrick, MD
Real-World Impact of Comparative Effectiveness Research Findings on Clinical Practice
Teresa B. Gibson, PhD; Emily D. Ehrlich, MPH; Jennifer Graff, PharmD; Robert Dubois, MD; Amanda M. Farr, MPH; Michael Chernew, PhD; and A. Mark Fendrick, MD
Currently Reading
A Systematic Review of Value-Based Insurance Design in Chronic Diseases
Karen L. Tang, MD; Lianne Barnieh, PhD; Bikaramjit Mann, MD; Fiona Clement, PhD; David J.T. Campbell, MD, MSc; Brenda R. Hemmelgarn, MD, PhD; Marcello Tonelli, MD, SM; Diane Lorenzetti, MLS; and Braden J. Manns, MD, MSc

A Systematic Review of Value-Based Insurance Design in Chronic Diseases

Karen L. Tang, MD; Lianne Barnieh, PhD; Bikaramjit Mann, MD; Fiona Clement, PhD; David J.T. Campbell, MD, MSc; Brenda R. Hemmelgarn, MD, PhD; Marcello Tonelli, MD, SM; Diane Lorenzetti, MLS; and Braden J. Manns, MD, MSc
Value-based insurance design for prescription drug coverage increases drug adherence in patients with chronic disease, though their effect on clinical outcomes and health spending remain uncertain.
Impact on Clinical Outcomes

Only the 1 randomized controlled trial13 examined the impact of essential drug coverage on clinical outcomes. The trial showed that in patients discharged from the hospital after a myocardial infarction, the rate of first major vascular event or revascularization was similar between those with full drug coverage for essential CV medications (angiotensin converting enzyme inhibitors, beta-blockers, and statins) and those with “usual drug coverage” (mean co-payments for the medications of interest ranging between $12.83 and $24.92 depending on the class). However, rates of total major vascular events or revascularization (hazard ratio [HR] 0.89; 95% CI, 0.80-0.99), and first major vascular event (HR 0.86, 95% CI, 0.74-0.99) were significantly lower in the full drug coverage group compared with the usual coverage group.

Impact on Health Utilization and Expenditures

One controlled before-and-after study21 examined changes to healthcare utilization before and after implementation of V-BID, but showed conflicting results, with a reduction in hospitalizations in the high-risk group who participated in V-BID and an intensive disease management program, but an increase in hospitalizations in the low-risk group participating in V-BID and a less intensive disease management program when compared with controls who chose not to participate in either program.

Three of the 4 studies13,19,21 that examined the impact of V-BID on healthcare expenditures found an increase in prescription drug expenditures overall (Table 4), while the fourth study found no statistically significant difference. 20 As expected, patient-borne prescription drug costs decreased (relative spending 0.70, 95% CI, 0.65-0.75) with V-BID implementation in the randomized trial.13 Total healthcare spending, including both drug and non-drug expenditures, was similar in the V-BID group compared with the usual care group in 3 studies,13,19,20 including the randomized trial.13 In the fourth study,21 total healthcare spending was lower in those patients who participated in V-BID and intensive disease management, but higher in the V-BID and less intensive disease management group compared with those who did not participate in either the V-BID or disease management programs.


To our knowledge, this is the first systematic review to examine V-BID. We found 10 studies that evaluated 9 interventions which compared V-BID with no differential lowering of drug co-payments in patients with CV-related chronic diseases. Although V-BID was consistently associated with an increase in medication adherence of 2 to 5 percentage points across all studies, including the sole randomized trial, the evidence of impact of V-BID on clinical outcomes was far more limited, with only 1 study13 evaluating this. Though this study showed no difference in the primary clinical outcome, there was a decrease in adverse clinical secondary outcomes. Furthermore, the combined role of disease management and V-BID is unclear. Only 2 low-quality studies, at high risk of residual confounding21 and selection bias,19,21 reported outcomes separately for patients participating in V-BID and disease management compared with those who chose not to participate in either, allowing assessment of the impact of combining these programs.

Our review reveals a substantial evidence gap on the impact of V-BID on clinical outcomes, health utilization, and healthcare spending, consistent with prior narrative reviews by Choudhry and colleagues23 and Fairman and Curtiss.24 One possible reason that V-BID has not resulted in overall cost savings is that an increase in co-payments for low-value medications has not yet been applied together with a decrease in co-payments for high-value medications, as described in the original V-BID model.8 As a result, any cost savings with V-BID interventions depend on improved medication adherence leading to improved clinical outcomes and resulting in decreased healthcare utilization and medical spending. Melnick and Motheral,25 using a plausibility calculation method, argued that net cost savings with V-BID is highly unlikely, as large reductions in drug co-payments result only in small increases in medication use (low price elasticity), and that avoidable adverse events due to improved medication adherence are rare.

Despite the limited evidence, approximately 20% of private insurance plans offered by large American employers include V-BID.24 Moreover, in 2007, 80% of large employers indicated an interest in implementing V-BID over the ensuing 5 years.23 There has also been substantial US governmental interest and political activity regarding V-BID, and in 2009, the Seniors’ Medication Copayment Reduction Act was created, requesting a demonstration program to test V-BID in Medicare beneficiaries.26 Most recently, the Patient Protection and Affordable Care Act, under Section 2713(a), specifically addresses V-BID, stating “The Secretary may develop guidelines to permit a group health plan and a health insurance issuer offering group or individual health insurance coverage to utilize value-based insurance designs.”27 V-BID need not be limited to drug insurance alone, and could potentially be applied to other health services. In 2010, new regulations in the US required private health insurance plans to cover high-value preventive services that were given a rating of grade A or B by the United States Preventive Services Task Force. This includes breast and colon cancer screening, diabetes screening, and routine vaccinations.28 There has also been interest in applying VBID to the areas of diagnostic imaging,29 gastroenterologic procedures such as endoscopy,30 and oncology.31 However, actual implementation and subsequent evaluation of VBID has yet to extend beyond prescription medications. The limitations in evidence do not seem to substantiate the widespread interest and implementation of V-BID and should be considered experimental.

There were limitations to our review. First, our review evaluated only the impact of V-BID and not whether medications that had their co-payments reduced were correctly classified as “high value” in their respective V-BID programs. As with any systematic review, our study was limited by the quality of the underlying studies. Except for the 1 randomized trial, the literature base in V-BID at the time of our study had a moderate to high risk of bias, specifically in study design (in particular with selection bias) and reporting.24,32,33 Our focus on CV-related chronic diseases may limit generalizability to other conditions, though medications for these diseases constitute a large proportion of the medications funded by outpatient prescription drug benefit plans. In addition, private insurers implemented V-BID in 9 of the 10 studies, potentially also limiting generalizability of the findings, especially with respect to public drug insurers. Lastly, current studies in V-BID target populations that already have good medication adherence, and this may limit the ability of V-BID to increase compliance.25 A notable exception was the randomized trial, 13 with a baseline adherence of about 44%, likely because a variety of insurance plan sponsors were included—employer, union, and government insurers—thereby better representing the general population. Further research on the impact of V-BID on clinical and economic outcomes is required, particularly in populations that might benefit most,23 such as those at highest risk for clinical adverse events, those with low baseline compliance, and those facing financial barriers to drug adherence.

If V-BID is expected to lower costs, consideration must be given to increasing cost sharing for low-value medications. The major challenge is in classifying and defining a medication as low value, given that the evidence for services or medications being of low value is far less established than for high-value medications.34,35 Additional research into this, as well as the most appropriate patient populations to target, is required to inform further use of V-BID,36 particularly within publicly funded drug formularies.

Value-based insurance design is a novel approach to encourage adherence to high-value medications. Though it appears to be associated with improved medication adherence, the effects on clinical outcomes and overall health utilization and expenditures remain uncertain. Further high-quality research is required before more widespread implementation of V-BID can be encouraged.


Dr Campbell was supported by an Alberta Innovates-Health Solutions (AI-HS) Clinician Fellowship award. Dr Barnieh was supported by an Alberta Innovates-Health Solutions Trainee award. Drs Manns and Hemmelgarn were supported by career salary support awards from Alberta Innovates-Health Solutions. Dr Hemmelgarn was also supported by the Roy and Vi Baay Chair in Kidney Research. Dr Tonelli was supported by a Government of Canada Research Chair. Drs Manns, Hemmelgarn, and Tonelli were also supported by an alternative funding plan from the Government of Alberta and the Universities of Calgary and Alberta.

aDisease management programs consisting of targeted health education mailing, disease workbooks, telephone outreach, and counseling with a nurse to set care plans, periodic monitoring, or any combination of the above.

Author Affiliations: Department of Medicine, University of Calgary, Alberta, Canada (KLT, LB, BM, DJTC, BRH, BJM); Department of Community Health Sciences, University of Calgary, Alberta, Canada (LB, FC, DJTC, BRH, DL, BJM); Interdisciplinary Chronic Disease Collaboration, Calgary, Alberta, Canada (LB, FC, DJTC, BRH, MT, BJM); Institute of Public Health, University of Calgary, Alberta, Canada (FC, BRH, BJM); The Libin Cardiovascular Institute, University of Calgary, Alberta, Canada (BRH, BJM); Department of Medicine, University of Alberta, Edmonton, Alberta, Canada (MT).

Source of Funding: This research was supported by an interdisciplinary team grant from Alberta Innovates-Health Solutions, the Interdisciplinary Chronic Disease Collaboration.

Author Disclosures: The authors report no relationship or financial interest with any entity that would pose a conflict of interest with the subject matter of this article. The sponsors of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report.

Authorship Information: Concept and design (KLT, LB, BM, FC, DJTC, BRH, MT, DL, BJM); acquisition of data (KLT, LB, BM, FC, DJTC, BRH, MT, DL, BJM); analysis and interpretation of data (KLT, LB, BM, FC, DJTC, BJM); drafting of the manuscript (KLT); critical revision of the manuscript for important intellectual content (KLT, LB, BM, FC, DJTC, BRH, MT, DL, BJM).

Address correspondence to: Braden J. Manns, MD, MSc, Foothills Medical Centre, 1403 29th St NW, Calgary, AB T2N 2T9. E-mail:
1. Health Expenditures. CDC website. Published 2012. Accessed March 18, 2013.

2. National Health Expenditures Projections 2011-2021. CDC website. https:// Published 2012. Accessed March 18, 2013.

3. Fendrick AM, Chernew ME. Value-based insurance design: a “clinically sensitive” approach to preserve quality of care and contain costs. Am J Manag Care. 2006;12(1):18-20.

4. Goldman DP, Joyce GF, Zheng Y. Prescription drug cost sharing: associations with medication and medical utilization and spending and health. JAMA. 2007;298(1):61-69.

5. Lohr KN, Brook RH, Kamberg CJ, et al. Use of medical care in the Rand Health Insurance Experiment. Diagnosis- and service-specific analyses in a randomized controlled trial. Med Care. 1986;24(9 suppl):S1-S87.

6. Chernew ME, Rosen AB, Fendrick AM. Value-based insurance design. Health Aff (Millwood). 2007;26(2):w195-w203.

7. Tamblyn R, Laprise R, Hanley JA, et al. Adverse events associated with prescription drug cost-sharing among poor and elderly persons. JAMA. 2001;285(4):421-429.

8. Fendrick AM, Smith DG, Chernew ME, Shah SN. A benefit-based co-pay for prescription drugs: patient contribution based on total benefits, not drug acquisition cost. Am J Manag Care. 2001;7(9):861-867.

9. Fendrick AM, Chernew ME, Levi GW. Value-based insurance design: embracing value over cost alone. Am J Manag Care. 2009;15(10 suppl):S277-S283.

10. Turnbull F, Neal B, Ninomiya T, et al. Effects of different regimens to lower blood pressure on major cardiovascular events in older and younger adults: meta-analysis of randomised trials. BMJ. 2008;336 (7653):1121-1123.

11. Hemmingsen B, Lund SS, Gluud C, et al. Targeting intensive glycaemic control versus targeting conventional glycaemic control for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2013;11:CD008143.

12. EPOC Author Resources. Cochrane Effective Practice and Organisation of Care Group website. Published 2013. Accessed March 17, 2013.

13. Choudhry NK, Avorn J, Glynn RJ, et al. Full coverage for preventive medications after myocardial infarction. New Engl J Med. 2011;365(22): 2088-2097.

14. Choudhry NK, Fischer MA, Avorn J, et al. At Pitney Bowes, value-based insurance design cut co-payments and increased drug adherence. Health Aff (Millwood). 2010;29(11):1995-2001.

15. Chang A, Liberman JN, Coulen C, Berger JE, Brennan TA. Value-based insurance design and antidiabetic medication adherence. Am J Pharm Benefits. 2010;2(1):39-44.

16. Chernew ME, Shah MR, Wegh A, et al. Impact of decreasing copayments on medication adherence within a disease management environment. Health Aff (Millwood). 2008;27(1):103-112.

17. Farley JF, Wansink D, Lindquist JH, Parker JC, Maciejewski ML. Medication adherence changes following value-based insurance design. Am J Manag Care. 2012;18(5):265-274.

18. Maciejewski ML, Farley JF, Parker J, Wansink D. Co-payment reductions generate greater medication adherence in targeted patients. Health Aff (Millwood). 2010;29(11):2002-2008.

19. Gibson TB, Mahoney J, Ranghell K, Cherney BJ, McElwee N. Value-based insurance plus disease management increased medication use and produced savings. Health Aff (Millwood). 2011;30(1):100-108.

20. Gibson TB, Wang S, Kelly E, et al. A value-based insurance design program at a large company boosted medication adherence for employees with chronic illnesses. Health Aff (Millwood). 2011;30(1):109-117.

21. Kim YA, Loucks A, Yokoyama G, Lightwood J, Rascate K, Serxner SA. Evaluation of value-based insurance design with a large retail employer. Am J Manag Care. 2011;17(10):682-690.

22. Zeng F, An JJ, Scully R, Barrington C, Patel BV, Nichol MB. The impact of value-based benefit design on adherence to diabetes medications: a propensity score-weighted difference in difference evaluation. Value Health. 2010;13(6):846-852.

23. Choudhry NK, Rosenthal MB, Milstein A. Assessing the evidence for value-based insurance design. Health Aff (Millwood). 2010;29(11):1988-1994.

24. Fairman KA, Curtiss FR. What do we really know about V-BID? quality of the evidence and ethical considerations for health plan sponsors. J Manag Care Pharm. 2011;17(2):156-174.

25. Melnick SJ, Motheral BR. Is value-based value wasted? examining value-based insurance designs through the lens of cost-effectiveness. J Manag Care Pharm. 2010;16(2):130-133.

26. Fendrick AM, Martin JJ, Weiss AE. Value-based insurance design: more health at any price. Health Serv Res. 2012;47(1, pt 2):404-413.

27. Patient Protection and Affordable Care Act. Public Law No. 111-148, 124 Stat. 119. Vol 42 U.S. Code § 18001 (2010).

28. Administration announces regulations requiring new health insurance plans to provide free preventative care. Business Wire website. Published July 14, 2010. Accessed March 16, 2013.

29. Kelly AM, Cronin P. Value-based insurance design: barriers to implementation in radiology. Acad Radiol. 2011;18(9):1115-1122.

30. Saini SD, Fendrick AM. Value-based insurance design: implications for gastroenterology. Clinical Gastroenterol Hepatol. 2010;8(9):767-769.

31. de Souza JA, Ratain MJ, Fendrick AM. Value-based insurance design: aligning incentives, benefits, and evidence in oncology. J Natl Compr Canc Netw. 2012;10(1):18-23.

32. Fairman KA, Curtiss FR. Making the world safe for evidence-based policy: let’s slay the biases in research on value-based insurance design. J Manag Care Pharm. 2008;14(2):198-204.

33. Fairman KA, Curtiss FR. Still looking for health outcomes in all the wrong places? misinterpreted observational evidence, medication adherence promotion, and value-based insurance design. J Manag Care Pharm. 2009;15(6):501-507.

34. Neumann PJ, Auerbach HR, Cohen JT, Greenberg D. Low-value services in value-based insurance design. Am J Manag Care. 2010;16(4):280-286.

35. Robinson JC. Applying value-based insurance design to high-cost health services. Health Aff (Millwood). 2010;29(11):2009-2016.

36. Ginsburg M. Value-based insurance design: consumers’ views on paying more for high-cost, low-value care. Health Aff (Millwood). 2010;29(11):2022-2026.
Copyright AJMC 2006-2019 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
Welcome the the new and improved, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up