Currently Viewing:
The American Journal of Managed Care December 2015
Interest in Mental Health Care Among Patients Making eVisits
Steven M. Albert, PhD; Yll Agimi, PhD; and G. Daniel Martich, MD
The Impact of Electronic Health Records and Teamwork on Diabetes Care Quality
Ilana Graetz, PhD; Jie Huang, PhD; Richard Brand, PhD; Stephen M. Shortell, PhD, MPH, MBA; Thomas G. Rundall, PhD; Jim Bellows, PhD; John Hsu, MD, MBA, MSCE; Marc Jaffe, MD; and Mary E. Reed, DrPH
Health IT-Assisted Population-Based Preventive Cancer Screening: A Cost Analysis
Douglas E. Levy, PhD; Vidit N. Munshi, MA; Jeffrey M. Ashburner, PhD, MPH; Adrian H. Zai, MD, PhD, MPH; Richard W. Grant, MD, MPH; and Steven J. Atlas, MD, MPH
A Health Systems Improvement Research Agenda for AJMC's Next Decade
Dennis P. Scanlon, PhD, Associate Editor, The American Journal of Managed Care
An Introduction to the Health IT Issue
Jeffrey S. McCullough, PhD, Assistant Professor, University of Minnesota School of Public Health; Guest Editor-in-Chief for the health IT issue of The American Journal of Managed Care
Preventing Patient Absenteeism: Validation of a Predictive Overbooking Model
Mark Reid, PhD; Samuel Cohen, MD; Hank Wang, MD, MSHS; Aung Kaung, MD; Anish Patel, MD; Vartan Tashjian, BS; Demetrius L. Williams, Jr, MPA; Bibiana Martinez, MPH; and Brennan M.R. Spiegel, MD, MSHS
EHR Adoption Among Ambulatory Care Teams
Philip Wesley Barker, MS; and Dawn Marie Heisey-Grove, MPH
Currently Reading
Impact of a National Specialty E-Consultation Implementation Project on Access
Susan Kirsh, MD, MPH; Evan Carey, MS; David C. Aron, MD, MS; Omar Cardenas, BS; Glenn Graham, MD, PhD; Rajiv Jain, MD; David H. Au, MD; Chin-Lin Tseng, DrPH; Heather Franklin, MPH; and P. Michael Ho, MD, PhD
Patient-Initiated E-mails to Providers: Associations With Out-of-Pocket Visit Costs, and Impact on Care-Seeking and Health
Mary Reed, DrPH; Ilana Graetz, PhD; Nancy Gordon, ScD; and Vicki Fung, PhD
Innovations in Chronic Care Delivery Using Data-Driven Clinical Pathways
Yiye Zhang, MS; and Rema Padman, PhD
Health Information Technology Adoption in California Community Health Centers
Katherine K. Kim, PhD, MPH, MBA; Robert S. Rudin, PhD; and Machelle D. Wilson, PhD
Characteristics of Residential Care Communities That Use Electronic Health Records
Eunice Park-Lee, PhD; Vincent Rome, MPH; and Christine Caffrey, PhD
Using Aggregated Pharmacy Claims to Identify Primary Nonadherence
Dominique Comer, PharmD, MS; Joseph Couto, PharmD, MBA; Ruth Aguiar, BA; Pan Wu, PhD; and Daniel Elliott, MD, MSCE
Physician Attitudes on Ease of Use of EHR Functionalities Related to Meaningful Use
Michael F. Furukawa, PhD; Jennifer King, PhD; and Vaishali Patel, PhD, MPH

Impact of a National Specialty E-Consultation Implementation Project on Access

Susan Kirsh, MD, MPH; Evan Carey, MS; David C. Aron, MD, MS; Omar Cardenas, BS; Glenn Graham, MD, PhD; Rajiv Jain, MD; David H. Au, MD; Chin-Lin Tseng, DrPH; Heather Franklin, MPH; and P. Michael Ho, MD, PhD
E-consult implementation grew from 12 to 122 VHA sites with multiple specialties. The adjusted e-consult rate of 1.93/100 consults saved significant patient travel miles and costs.

ABSTRACT

Objectives: To assess the early impact of implementation of the electronic consults (e-consults) initiative by the Veterans Health Administration (VHA), designed to improve specialty care access.

Study Design: Observational cohort study exploiting a natural experiment begun in May 2011 at 12 VHA medical centers and expanded to 122 medical centers by December 2013.

Methods: The following were assessed: 1) growth of e-consults by VHA regional networks, medical centers, and specialty; 2) location of patient’s primary care provider (medical center vs community-based outpatient clinic [CBOC]); 3) potential patient miles needed to travel for a specialty care face-to-face consult in place of the observed e-consults using estimated geodesic distance; 4) use of specialty care subsequent to the e-consult.

Results: Of 11,270,638 consults completed in 13 clinics of interest, 217,014 were e-consults (adjusted rate, 1.93 e-consults per 100 consults). The e-consult rate was highest in endocrinology (5.0 per 100), hematology (3.0 per 100), and gastroenterology (3.0 per 100). The percentage of e-consult patients with CBOC-based primary care grew from 28.5% to 44.4% in the first year of implementation and to 45.6% at year 3. Of those e-consult patients from community clinics, the average potential miles needed to travel was 72.1 miles per patient (SD = 72.6; median = 54.6; interquartile range = 17.1-108), translating to a potential savings of 6,875,631 total miles and travel reimbursement costs of $2,853,387.

Conclusions: E-consult volume increased significantly since inception within many medical and surgical specialties. For patients receiving primary care at one of more than 800 CBOCs, e-consults may decrease travel burden and direct travel costs for patients.

Am J Manag Care. 2015;21(12):e648-e654

Take-Away Points
 
This article discusses a broad-scale implementation of outpatient specialty care e-consults within a patient-centered medical home model for a large integrated health system. 
  • This can be a patient-centered model that saves patients travel time and money. 
  • E-consults may obviate the need for some specialty care visits. 
  • Policy to financially support this model may be prudent. 
  • Increased uptake may occur in specific medical specialties.
The Veterans Health Administration (VHA) is the largest integrated healthcare delivery system in the United States. Like an accountable care organization (ACO), the VHA provides care to a defined group of enrollees with the goal of delivering coordinated, high-quality, patient-centered care.1-3 Approximately 50% of the 8 million veterans cared for in the VHA receive specialty care. Efforts to bring primary care closer to veterans’ homes have led to more than 800 community-based outpatient clinics (CBOCs). In contrast, specialty care remains largely concentrated in urban medical centers, although 41% of veterans enrolled in VHA live in rural communities. These and other barriers to access present challenges for the delivery of specialty care.4,5

To improve access, efficiency, and coordination between specialty care and primary care, the VHA’s Specialty Care Transformation Program Office implemented electronic consults (e-consults) in 2011. Primary care clinicians request clinical guidance with the expectation of an expeditious, albeit asynchronous, response. E-consults and responses are integrated into the VHA’s electronic health record (EHR). Through e-consults, primary care clinicians can incorporate specialty care advice into veteran care and better prepare patients for specialty care visits if needed. Although e-consults have been implemented on smaller scales in other settings, the implementation of a national e-consult program has not been previously described.

The study’s objective was to describe the spread and impact of the VHA national e-consult program. We assessed the growth of e-consults by VHA regional networks, medical centers, and clinical specialty, and evaluated the use of e-consults based on the location of the patient’s primary care provider (PCP) (medical center vs CBOC). Finally, we estimated the number of miles patients may have potentially traveled for an in-person specialty care visit in the absence of an e-consult program. E-consultation implementation across the VHA system can serve as a model for technology-based interventions to improve access to specialist consultation and provide patient-centered specialty care.

 
METHODS
VHA Network of Care

The VHA has 152 medical centers and over 800 CBOCs within 21 regional networks (Veterans Integrated Service Networks [VISNs]). Each regional VISN has 4 to 8 medical centers and generally covers 1 to 4 states. In addition to medical centers, each VISN has CBOCs located 10 to 300 miles from a medical center, providing primary care to patients closer to their homes. To support veterans living far from medical centers (41% of the veteran population lives in rural areas), patients are frequently eligible for financial reimbursement for miles traveled for care. In general, veterans are assigned to a PCP at a CBOC or medical center closest to them.

E-Consult Process

At the discretion of the PCP, e-consults can be entered into the EHR for any specialty in which an e-consult mechanism has been implemented. E-consults about specific questions are generally entered as free text or into templates with pre-specified questions. Responding specialty clinicians have access to the medical records, including progress notes, laboratory data, radiology tests, and medications. E-consults generally focus on narrow questions that help address questions of diagnosis, testing, or management of a condition. Either specialist or PCP can convert an e-consult into a request for a face-to-face consultation. Follow-up communication with patients about recommendations, if any, is the responsibility of the PCP, unless otherwise identified in the EHR.

Implementation of the E-Consult

In May 2011, the e-consult program for certain specialties began at 12 VHA medical centers in 7 VISNs. Through a competitive process, 12 pilot-site medical centers received limited funding and national guidance for business rules. Oncology, diabetes, endocrinology, dementia, neurosurgery, cardiology, hematology, liver transplant, pain medicine, and rheumatology were the included specialties. Following initial rollout at pilot sites, Specialty Care Transformation worked with VISN leadership to expand the use of e-consults nationally. Further funding was provided until September 30, 2014, to all VISNs; local facilities could implement e-consults in other clinical specialties based on facility needs. Subsequently, e-consults became a national priority and use of e-consults was tracked for each medical center as a component of VHA goals for patient-centered care delivered virtually.

Measures

Specialty clinic of interest. We focused on the following clinics of interest to Specialty Care Transformation: endocrinology, hematology, neurology, pulmonary, nephrology, urology, cardiology, gastroenterology, oncology, pain medicine, geriatric, dementia, and diabetes. Consults were identified in administrative outpatient visit data that included specialty clinic category (ie, clinic stop codes) and a designated Current Procedural Terminology code to distinguish e-consults. We focused on medical centers in the continental United States and patients with assigned PCPs.

E-consult volume adjusted for clinic volume. Many medical centers implemented e-consults in multiple specialties. For every specialty/site combination, we calculated daily rolling rates of e-consult volume adjusted for total clinic volume. For a given 30-day window, we summed the number of e-consults and divided by the number of total consults.

Miles-needed-to-travel calculations. Travel distance was estimated by the geodesic (“as the crow flies”) distance from patients’ residence to their “home station” (ie, facility where they received primary care). The adjusted distance was considered the difference between the distance from the patient’s residence to the specialty care facility and the distance from the patient’s residence to their primary care facility. Distances were considered erroneous and set to missing if the patient distance to primary care exceeded 150 miles or the adjusted distance was lower than –25 miles. (Negative values may occur if the patient’s primary care location is farther away than the specialty clinic completing the e-consult.) Primary care visits outside the specialty care administrative region didn’t contribute to home station identification; patients receiving primary care outside that region were considered to have missing home stations. Patients with home locations outside the contiguous 48 states were excluded from all analyses.

Analyses

We aggregated the number of completed e-consults by specialty, regional network, and location where patients received primary care, either at a CBOC or medical center. We reported the quarterly frequency of e-consults from May 2011 to December 2013, stratified by VISN and specialty. Quarterly e-consults were adjusted by total consults and expressed as a rate. We calculated the e-consult rate to facilitate comparisons across VISNs, facilities, and clinic specialties.

We calculated the proportion of patient consults receiving primary care at a CBOC for each yearly quarter, stratified by type of consult (e-consult or not). We used χ2 tests to compare binary outcomes (patient receiving primary care at a CBOC; subsequent face-to-face consult after the first consult; and primary care visit in the 3 months following the first consult) between e-consults and face-to-face consults. Among patients receiving primary care at a CBOC, we used Wilcoxon rank-sum tests to compare the distribution of miles needed to travel between e-consults and face-to-face consults.

Statistical tests were performed using R software, version 3.1.0, (R Foundation for Statistical Computing, Vienna, Austria). Initial data aggregation was performed with SAS version 9.3 (SAS Institute, Cary, North Carolina).

 
RESULTS
We identified 14,182,136 specialty care visits between May 1, 2011, and December 31, 2013, of which 262,143 were e-consults. We excluded visits outside of the continental United States (n = 275,611), visits occurring outside of VHA medical centers (n = 1,265,169), visits by patients without an assigned primary care clinic (n = 692,726), visits by patients whose assigned primary care clinic was not a CBOC or VHA medical center (eg, residents of long-term care facilities) (n = 986,759), sites that had less than 1 e-consult per 10,000 visits (n = 1,127,251), and sites with less than 1000 total visits across the time period (n = 87,973). These categories had some overlap, and 2,911,498 visits in total were excluded.

There were 217,014 completed e-consults that met the inclusion criteria in the 13 clinics of interest in all 21 VISNs. During the same time period, there were 11,270,638 total consults that met the inclusion criteria, giving an adjusted rate of 1.93 e-consults per 100 consults. At the VISN level, the rate of e-consults per 100 total consults varied (mean = 2.0; SD = 0.8; median = 1.9; interquartile range [IQR] = 1.4-2.4). Although there has been some variability in uptake of e-consults across VISNs, it has generally increased with time (Figure 1). At the individual medical centers, the range of e-consults has varied from 0.02 to 26 per 100 consults.

E-consults were completed most frequently in cardiology (n = 44,322), gastroenterology (n = 29,043) and endocrinology (n = 23,972). Adjusting for total consult volume, the rate of e-consults were highest in endocrinology (5.0 per 100 total consults), hematology (3.0 per 100 total consults), and gastroenterology (3.0 per 100 total consults) (Figure 2).

Comparing e-consults to face-to-face consults, there were differences in both: 1) the percent of patients coming from outside the specialty care medical center, and 2) the distance from their primary care center to the specialty care center. During the study period, comparing the patients participating in e-consults with those participating in face-to-face consults, the e-consult population had a higher percentage of patients who received primary care at CBOCs (45.3% vs 36%; P <.0001). In the first year of implementation, the percent of e-consult patients with CBOC-based primary care grew from 28.5% to 44.4%. This increase slowed in the subsequent 2 years, growing from 44.4% to only 45.6%. In the same 3-year period, the percent of face-to-face consult patients with CBOC-based primary care grew slightly, from 34.7% to 37% (see eAppendix Figure, available at www.ajmc.com). Among the patients receiving primary care at CBOCs outside of a medical center, the distance from their PCP to the medical center was farther for patients receiving e-consults (38 vs 32 miles; P <.0001) compared with patients receiving face-to-face consults. These results suggest that compared with face-to-face consults, e-consults are used more frequently for patients with lower spatial access to specialty care.

Geographic distributions of “hub” medical centers and “spoke” community clinics demonstrate wide variation in number of spoke connections for each hub, as well as number of consults between each hub and spoke combination (Figure 3). The Figure 3 map highlights the geographic reach of e-consults to patients with potentially less access to specialty care.

 
Copyright AJMC 2006-2018 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
x
Welcome the the new and improved AJMC.com, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up