Currently Viewing:
The American Journal of Managed Care February 2018
Community Navigators Reduce Hospital Utilization in Super-Utilizers
Michael P. Thompson, PhD; Pradeep S.B. Podila, MS, MHA; Chip Clay, MDiv, BCC; Joy Sharp, BS; Sandra Bailey-DeLeeuw, MSHS; Armika J. Berkley, MPH; Bobby G. Baker, DMin, BCC; and Teresa M. Waters, PhD
Currently Reading
Cost-Effectiveness of Collaborative Care for Depression and PTSD in Military Personnel
Tara A. Lavelle, PhD; Mallika Kommareddi, MPH; Lisa H. Jaycox, PhD; Bradley Belsher, PhD; Michael C. Freed, PhD; and Charles C. Engel, MD, MPH
ACA Marketplace Premiums and Competition Among Hospitals and Physician Practices
Maria Polyakova, PhD; M. Kate Bundorf, PhD, MBA, MPH; Daniel P. Kessler, JD, PhD; and Laurence C. Baker, PhD
Pricing of Monoclonal Antibody Therapies: Higher If Used for Cancer?
Inmaculada Hernandez, PharmD, PhD; Samuel W. Bott, BS; Anish S. Patel, BS; Collin G. Wolf, BS; Alexa R. Hospodar, BS; Shivani Sampathkumar, BS; and William H. Shrank, MD, MSHS
Leveraging Benefit Design for Better Diabetes Self-Management and A1C Control
Abiy Agiro, PhD; Yiqiong Xie, PhD; Kevin Bowman, MD; and Andrea DeVries, PhD
Development of a Tailored Survey to Evaluate a Patient-Centered Initiative
Marcy Winget, PhD; Farnoosh Haji-Sheikhi, MS; and Steve M. Asch, MD, MPH
Claims-Based Risk Model for First Severe COPD Exacerbation
Richard H. Stanford, PharmD, MS; Arpita Nag, PhD, MBA, MS; Douglas W. Mapel, MD; Todd A. Lee, PhD; Richard Rosiello, MD; Michael Schatz, MD; Francis Vekeman, MS; Marjolaine Gauthier-Loiselle, PhD; J.F. Philip Merrigan, PhD; and Mei Sheng Duh, ScD
Impact of Telephonic Comprehensive Medication Reviews on Patient Outcomes
Evan A. DeZeeuw, PharmD; Ashley M. Coleman, PharmD; and Milap C. Nahata, PharmD, MS
Variation in Markups on Outpatient Oncology Services in the United States
Angela Park; Tim Xu, MD, MPP; Michael Poku, MD, MBA; James Taylor, MBBChir, MPH, MRCS(Eng); and Martin A. Makary, MD, MPH

Cost-Effectiveness of Collaborative Care for Depression and PTSD in Military Personnel

Tara A. Lavelle, PhD; Mallika Kommareddi, MPH; Lisa H. Jaycox, PhD; Bradley Belsher, PhD; Michael C. Freed, PhD; and Charles C. Engel, MD, MPH
Centrally assisted collaborative telecare is a cost-effective strategy relative to usual care for treating posttraumatic stress disorder and depression in the Military Health System.
ABSTRACT

Objectives: Collaborative care is an effective approach for treating posttraumatic stress disorder (PTSD) and depression within the US Military Health System (MHS), but its cost-effectiveness remains unstudied. Our objective was to evaluate the costs and cost-effectiveness of centrally assisted collaborative telecare (CACT) versus optimized usual care (OUC) for PTSD and depression in the MHS.

Study Design: A randomized trial compared CACT with OUC. Routine primary care screening identified active-duty service members with PTSD or depression. Eligible participants (N = 666) were randomized to CACT or OUC and assessed at 3, 6, and 12 months. OUC patients could receive care management and increased behavioral health support. CACT patients could receive these services plus stepped psychosocial treatment and routine centralized team monitoring.

Methods: Quality-adjusted life-years (QALYs) were derived from the 12-Item Short Form Health Survey. Claims and case management data were used to estimate costs. Cost-effectiveness analyses were conducted from a societal perspective.

Results: Data from 629 patients (320 CACT and 309 OUC) with sufficient follow-up were analyzed. CACT patients gained 0.02 QALYs (95% CI, –0.001 to 0.03) relative to OUC patients. Twelve-month costs, including productivity, were $987 (95% CI, –$3056 to $5030) higher for CACT versus OUC. CACT was estimated to cost $49,346 per QALY gained compared with OUC over 12 months. There is a 58% probability that CACT is cost-effective at a $100,000/QALY threshold.

Conclusions: Despite its higher costs, CACT appears to be a cost-effective strategy relative to OUC for managing PTSD and depression in the MHS.

Am J Manag Care. 2018;24(2):91-98
Takeaway Points

Centrally assisted collaborative telecare is a cost-effective strategy relative to usual care for treating posttraumatic stress disorder and depression in the Military Health System (MHS).
  • These findings are consistent with those of previous studies that have investigated the use of similar models of care in a range of healthcare settings and populations, but this is the first study to demonstrate value in a military healthcare setting.
  • Results indicate that investments in behavioral health integration and infrastructure in primary care may provide good value for healthcare systems similar to the MHS, which is a large integrated healthcare system serving approximately 9.5 million eligible beneficiaries.
Posttraumatic stress disorder (PTSD), anxiety, and depression are common conditions in the US military. Prevalence estimates of postdeployment PTSD and depression range from 13% to 18%, and 28% of service members report severe symptoms of PTSD, anxiety, or depression.1,2 These problems cause suffering and impairment and contribute to military attrition, absenteeism, misconduct, and sick-call visits.3,4 Despite this, less than half of the serving military personnel affected receive military mental health services, which are often not timely or adequate.5,6 The military has attempted to better integrate mental health services into primary care, and the first Army integration approach began in 2007.7,8 Access to and quality of mental health services for military personnel has remained a recurring public policy concern, however.1,9 To address this, the Institute of Medicine has called for health system–level interventions to increase access to and continuity of mental health services in military and veteran populations.10

Collaborative care is an empirically supported method of extending and improving the reach, quality, and outcomes of care for common health conditions.11,12 In more than 80 randomized trials, collaborative care models have demonstrated improved outcomes among patients with depression and anxiety,12-14 depression-related suicidal ideation,15 depression and other chronic health conditions (eg, diabetes, asthma),16 and chronic pain.17,18 As of January 1, 2017, the Medicare fee schedule now reimburses for the delivery of collaborative care.

Recently, the first randomized controlled trial (RCT) of centrally assisted collaborative telecare (CACT) for PTSD and depression within the Military Health System (MHS) was completed.19,20 The STepped Enhancement of PTSD Services Using Primary Care (STEPS-UP) trial compared CACT with the Army’s preexisting program integrating behavioral health in primary care. CACT was effective in reducing the severity of PTSD and depressive symptoms in active military personnel using primary care, adding to the evidence supporting the use of collaborative care treatment models for mental illness in a range of settings and populations.20 However, no prior research has shown whether a collaborative care approach to treating PTSD and depression is cost-effective in the MHS, an important question given that the military spends more than $50 billion annually on healthcare for its nearly 10 million beneficiaries.21 The objective of this study was to evaluate the cost-effectiveness of treating patients with PTSD and depression using CACT compared with optimized usual care (OUC) in the MHS.

METHODS

Trial Design and Treatment Protocol

The RCT study design has been published elsewhere in detail.19 Briefly, between February 2012 and September 2013, routine clinical screening in 18 Army primary care clinics at 6 military installations identified active-duty service members with 1) PTSD, depression, or both, and 2) access to Internet and email. Patients were excluded if they had current alcohol dependence, active suicidal ideation in the prior 2 months, planned geographic relocation within 6 months, or current duties in the participating clinic.20

Eligible participants (N = 666) were randomized to OUC (n = 334) or CACT (n = 332) to treat their symptoms for up to 12 months after enrollment. OUC patients received the standard integrated mental health approach for Army primary care clinics, which included increased access to mental health specialists and follow-up monitoring from a nurse care manager who tracked patients’ progress and provided status updates to primary care clinicians.8 CACT patients received the standard OUC services plus 1) stepped psychosocial treatment and 2) routine monitoring by a central mental health team with a centralized patient symptom registry. Nurse care managers who worked with CACT patients also received additional training in behavioral activation, problem solving, and motivational interviewing to provide additional support to patients.20 The study was approved by all affiliated institutional research review boards.

Health Outcome Assessment

We used data from patient surveys administered at baseline and 3-, 6-, and 12-month follow-ups to assess the primary outcomes of depression and PTSD, as well as health-related quality of life (QOL) and other secondary health outcomes. We assessed the severity of PTSD and depression symptoms using the PTSD Diagnostic Scale22,23 (PDS) and the Hopkins Symptom Checklist depression items (HSCL-20).24 We assessed QOL using the 12-Item Short Form Health Survey (SF-12).25 We derived quality-adjusted life-years (QALYs) from the Short-Form Six-Dimension utility index (SF-6D).26 Depression-free days (DFDs) were derived from the scored HSCL-20,27 and PTSD-free days (PFDs) were derived from the PDS.

Intervention Costs

Both arms of the study followed protocols that instructed the use of weekly caseload review calls between nurse coordinators and staff psychiatrists to review participating patients’ progress, as well as regular case management calls between the nurse coordinator and the patient and other phone, email, or text message contacts as needed. An electronic case management system was used to track all contacts and caseload review calls. Nurse coordinators in each intervention arm also underwent training and education sessions.

To estimate the cost of each of these intervention components, we multiplied the estimated hourly wage of each participating staff member (nurse coordinator and/or staff psychiatrist) by the number and average duration of each contact or training session, estimated from case management system data and interviews with nurse coordinators at each site. The CACT arm also included a centralized management team that coordinated intervention activities throughout the 12-month study period, composed of a half-time administrative assistant, a full-time psychologist, and a half-time nurse coordinator. We estimated the cost of these services using the salary of each staff member. All wage estimates were based on the General Schedule pay scale.20

Other Costs

We used claims data to assess the other (nonintervention) healthcare resources utilized within and outside of the MHS through the 12-month study period. These data contain information on medications, inpatient stays, emergency department visits, outpatient tests and procedures, outpatient visits, and telephone contacts. Utilization was recorded within the MHS and outside the MHS when reimbursed by TRICARE. For services provided within the MHS, costs were estimated from the given estimated full service cost, which includes resources used and estimated overhead; for services and medications provided outside of the MHS, costs were estimated from the total amount reimbursed by TRICARE. We excluded any services, such as certain telephone contacts, that were recorded in claims data but already accounted for in our analysis as an intervention component. Healthcare costs borne by the patient, including co-pays for services, were not included.

We used survey data from 3-, 6-, and 12-month follow-ups to estimate productivity costs over the course of the 12-month study. At each survey time point, we asked participants if they had missed an entire workday or part of a workday “due to a mental or physical health problem” in the previous 28 days. We extrapolated the stated number of lost workdays to cover the full period since the previous survey and estimated productivity costs by multiplying the estimated number of lost workdays by a daily personnel cost. We estimated personnel costs from the salaries reported at the study baseline plus fringe benefits.

Statistical Analysis

We included patients who received the intervention and had at least 1 follow-up interval of both survey data and cost data in the primary economic evaluation analytic population. We excluded patients who did not receive any intervention or received the intervention but did not have both cost and survey data. For patients included in the analysis, we imputed missing 12-month cumulative QALY, utilization, and cost data using the fully conditional specification approach.28 Imputation models included available measures of cost and utilization; demographic and social characteristics, including age, race, gender, salary, marital status, and education; and clinical characteristics, including SF-12 scores and depression and/or PTSD status. Imputations were performed within each treatment arm. Five imputations were created, and results from each imputation were pooled using the rules outlined by Rubin.29 Specifically, we defined point estimates as the average of those from the 5 imputed datasets. The variance of the estimate was derived from both the within-imputation and between-imputation variances, where the former is the average of the variances of point estimates from the 5 imputed datasets.

Categorical data are reported as frequencies and were compared using χ2 or Fisher’s exact test statistics. Continuous demographic variables are reported as means and SDs and were compared with t test statistics. Continuous cost and utilization data are reported as means; the statistical significance of the difference in means between the 2 groups was evaluated using a 95% CI. Cost categories also report median values. All analyses were performed in SAS 9.4 (SAS Institute, Inc; Cary, North Carolina).

Cost-Effectiveness Analysis

We examined the cost-effectiveness of CACT versus OUC over the 12-month study period. In our base case analysis, we included all intervention costs, other healthcare costs paid for by the MHS or TRICARE within and outside of the MHS, and productivity costs. The primary outcome assessed was the incremental cost-effectiveness ratio (ICER) in dollars per QALY gained, which was the difference in mean total costs between the 2 treatment arms over the 12-month study period divided by the difference in mean QALYs. We converted all costs to 2014 US dollars for analysis.

We ran 6 sensitivity analyses to examine the impact of assumptions used in our base case analysis. We generated cost-effectiveness acceptability curves to show the probability that either CACT or OUC would be considered the preferred intervention at a range of cost-effectiveness thresholds (Figure).29

RESULTS

Study Sample

 
Copyright AJMC 2006-2019 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
x
Welcome the the new and improved AJMC.com, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up