Currently Viewing:
The American Journal of Managed Care April 2018
Delivering on the Value Proposition of Precision Medicine: The View From Healthcare Payers
Jane Null Kogan, PhD; Philip Empey, PharmD, PhD; Justin Kanter, MA; Donna J. Keyser, PhD, MBA; and William H. Shrank, MD, MSHS
Care Coordination for Children With Special Needs in Medicaid: Lessons From Medicare
Kate A. Stewart, PhD, MS; Katharine W.V. Bradley, PhD, MBA; Joseph S. Zickafoose, MD, MS; Rachel Hildrich, BS; Henry T. Ireys, PhD; and Randall S. Brown, PhD
Cost Sharing and Branded Antidepressant Initiation Among Patients Treated With Generics
Jason D. Buxbaum, MHSA; Michael E. Chernew, PhD; Machaon Bonafede, PhD; Anna Vlahiotis, MA; Deborah Walter, MPA; Lisa Mucha, PhD; and A. Mark Fendrick, MD
The Well-Being of Long-Term Cancer Survivors
Jeffrey Sullivan, MS; Julia Thornton Snider, PhD; Emma van Eijndhoven, MS, MA; Tony Okoro, PharmD, MPH; Katharine Batt, MD, MSc; and Thomas DeLeire, PhD
A Payer–Provider Partnership for Integrated Care of Patients Receiving Dialysis
Justin Kindy, FSA, MAAA; David Roer, MD; Robert Wanovich, PharmD; and Stephen McMurray, MD
Financial Burden of Healthcare Utilization in Consumer-Directed Health Plans
Xinke Zhang, PhD; Erin Trish, PhD; and Neeraj Sood, PhD
Progress of Diabetes Severity Associated With Severe Hypoglycemia in Taiwan
Edy Kornelius, MD; Yi-Sun Yang, MD; Shih-Chang Lo, MD; Chiung-Huei Peng, DDS, PhD; Yung-Rung Lai, PharmD; Jeng-Yuan Chiou, PhD; and Chien-Ning Huang, MD, PhD
Currently Reading
Physician and Patient Tools to Improve Chronic Kidney Disease Care
Thomas D. Sequist, MD, MPH; Alison M. Holliday, MPH; E. John Orav, PhD; David W. Bates, MD, MSc; and Bradley M. Denker, MD
Provider and Patient Burdens of Obtaining Oral Anticancer Medications
Daniel M. Geynisman, MD; Caitlin R. Meeker, MPH; Jamie L. Doyle, MPH; Elizabeth A. Handorf, PhD; Marijo Bilusic, MD, PhD; Elizabeth R. Plimack, MD, MS; and Yu-Ning Wong, MD, MSCE

Physician and Patient Tools to Improve Chronic Kidney Disease Care

Thomas D. Sequist, MD, MPH; Alison M. Holliday, MPH; E. John Orav, PhD; David W. Bates, MD, MSc; and Bradley M. Denker, MD
Decision support tools, disease registries, and patient engagement materials can improve population-based chronic kidney disease care.
Outcomes and Follow-Up

The primary study end points were based in part on the KDIGO guidelines and extracted from the EHR. Among high-risk patients, the primary end points included an office visit to a nephrologist during the 12-month study period and the prescription of an ACE inhibitor or ARB during the 12-month study period for those with hypertension and/or microalbuminuria and no documented allergy. The primary study end points among low-risk patients included the presence of a urine protein test during the 12-month study period and the prescription of an ACE inhibitor or ARB for those with hypertension and/or microalbuminuria and no documented allergy. We also assessed secondary outcomes of rates of annual serum creatinine, LDL cholesterol, hemoglobin, phosphorus, 25-OH vitamin D, calcium, and parathyroid hormone testing. Physicians and patients were not blinded to intervention status, although all outcomes data were collected without respect to intervention status.

Patient and Physician Surveys

We surveyed all patients in the intervention arm who were enrolled in the outreach program (n = 1002) by their PCP. Patients used a 4-point ordinal scale from “definitely yes” to “definitely no” to report on whether the mailings gave them choices to think about for treating CKD, helped them set specific CKD treatment goals, and helped them understand their medications for CKD. Patients also reported on whether their doctor or another health professional had told them that they had weak or failing kidneys, and they used a 5-point ordinal scale from “strongly agree” to “strongly disagree” to report agreement with their diagnosis of CKD. Finally, patients used a 5-point scale from “excellent” to “poor” to rate the CKD care they received. The survey was administered via a single mailing at the end of the intervention and achieved a 24% (n = 242) response rate. 

We surveyed 153 study physicians at the completion of the intervention. Physicians used a 5-point ordinal scale from “always” to “never” to report on the frequency with which they informed patients of a new diagnosis of CKD once they recognized it was present. Physicians also reported on the eGFR threshold at which they felt comfortable informing their patients of a diagnosis of CKD. Intervention physicians also rated the effectiveness of the electronic alerts, patient mailings, and collaboration with nephrology on improving the quality of CKD care among their patients (“very effective,” “somewhat effective,” or “not effective”). The survey was implemented via an initial paper mailing, followed by a reminder email to nonresponders and a final paper mailing at 4 weeks, achieving a 73% (n = 111) response rate.

Statistical Analysis

Balance between patient demographic characteristics in the intervention and control arms was checked using a t test for patient age, Fisher exact tests for binary variables, and χ2 tests for categorical variables. We analyzed the impact of the intervention by fitting logistic regression models using the generalized estimating equation approach to account for clustering of patients within clinics, with performance of each of our prespecified outcomes as the dependent variable and intervention status as the primary independent variable. The models were implemented using the GENMOD procedure in SAS version 9.3 (SAS Institute; Cary, North Carolina).

We conducted post hoc analyses to understand the importance of exposure to the intervention components. These included the subset of patients in the intervention arm who received the outreach mailings, as well as patients with varying numbers of office visits (0, 1-3, and >3) to their PCP during the intervention period. For the outreach mailing analyses, we used propensity score stratification to compare the appropriate set of patients in the control arm with the subset of patients in the intervention arm who received mailings. A propensity score model was created separately for each clinic, using the following variables as predictors of receiving a mailing: patient sex; race/ethnicity; insurance type; prior nephrology visit; current treatment with an ACE inhibitor or ARB; baseline eGFR; and presence of diabetes, cardiovascular disease, or hypertension. Patients from the intervention arm who received a mailing were then compared, through stratification, with patients from the control arm who had a similar probability (ie, were within the same 5% propensity interval) of receiving a mailing. Outcomes among patient groups were compared using the same clustered logistic regression models described earlier, adjusting for correlation within clinicians, time on study, and propensity strata.

RESULTS

Baseline Characteristics

We randomized 153 PCPs caring for 7691 adult patients with stage III CKD, including 3947 high-risk patients and 3744 low-risk patients (Table 1). The median number of patients enrolled per PCP was 47 (interquartile range, 26-69).

Primary Outcomes

Among high-risk patients, those in the intervention arm were significantly more likely to have an office visit with a nephrologist during the 12-month study period compared with those in the control arm (45% vs 34%; <.001) (Table 2). Among low-risk patients, those in the intervention arm were significantly more likely than those in the control arm to have received urine microalbumin testing in the prior 12 months (45% vs 21%; <.001). There was no difference between the intervention and control arms in rates of prescribing an ACE inhibitor or ARB in either the high-risk patient group (76% vs 79%; = .17) or the low-risk patient group (64% vs 65%; = .57).

Secondary Outcomes

Among both high- and low-risk patients, those in the intervention arm had higher rates of annual testing compared with those in the control arm for phosphorus, vitamin D, and parathyroid hormone. High-risk patients also had higher annual testing rates for calcium in the intervention arm compared with the control arm (Table 2).

Exposure to Intervention Components

Intervention physicians enrolled 1002 (26%) patients into the patient mailing program, including 647 (32%) high-risk patients and 355 (19%) low-risk patients. With the exception of ACE inhibitor or ARB therapy and testing of microalbumin in high-risk patients, both high- and low-risk patients in the intervention arm who received patient mailings were significantly more likely than propensity-stratified control arm patients to achieve all primary and secondary study outcomes (Table 3).

Among all study patients, 41% had 4 or more office visits to their PCP during the study period, 51% had 1 to 3 visits, and 7% had no primary care visits. Regardless of intervention status, rates of annual nephrology visits, receiving prescription of ACE inhibitor or ARB therapy, and annual urine protein monitoring were all significantly lower among patients with no primary care visits compared with either group of patients with at least 1 visit (Table 4). In addition, the intervention effect varied according to the number of PCP office visits during the study period, demonstrating no significant intervention effect among those patients with 0 visits and larger intervention effect sizes for those with at least 1 visit.

Physician and Patient Surveys

More than half (61%; n = 138) of intervention patients who received outreach mailings reported being told by a doctor or health professional that they had weak or failing kidneys. In logistic regression models that considered patient age, sex, and race; comorbid conditions (diabetes, hypertension, and cardiovascular disease); and CKD features (high- vs low-risk status and nephrology consultation), the absence of diabetes (odds ratio [OR], 1.9; 95% CI, 1.1-3.2), a nephrology visit prior to the intervention period (OR, 2.6; 95% CI, 1.6-4.3), and a nephrology visit during the intervention period (OR, 3.5; 95% CI, 2.1-5.9) were all associated with patients reporting being told that they had weak or failing kidneys.

More than half (63%; n = 142) of intervention patients strongly or somewhat agreed with their diagnosis of CKD, whereas 18% (n = 41) strongly or somewhat disagreed with their diagnosis of CKD. Two-thirds (67%; n = 136) of intervention patients rated their care for CKD as excellent or very good. A majority (89%; n = 177) of patients reported that the outreach mailings definitely or somewhat gave them choices to think about for treating their CKD, 82% (n = 162) felt the mailings helped them set specific goals for CKD treatment, and 81% (n = 153) felt the mailings helped them understand their medications for CKD.

Intervention and control physicians were similarly likely to report that they always or usually informed their patients of a diagnosis of CKD (87% vs 75%; = .12). A higher percentage of intervention physicians compared with control physicians reported feeling comfortable establishing a diagnosis of CKD using a threshold eGFR of less than 60 (56% vs 39%; = .07, adjusted for within-clinic correlation), although the difference was not statistically significant. Three-quarters (75%) of physicians in the intervention group reported that our electronic reminders were somewhat or very effective at improving the quality of CKD care among their patients, 84% reported the patient mailings were somewhat or very effective, and 92% reported that collaboration with nephrology was somewhat or very effective.



 
Copyright AJMC 2006-2019 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
x
Welcome the the new and improved AJMC.com, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up