Currently Viewing:
The American Journal of Managed Care September 2018
Food Insecurity, Healthcare Utilization, and High Cost: A Longitudinal Cohort Study
Seth A. Berkowitz, MD, MPH; Hilary K. Seligman, MD, MAS; James B. Meigs, MD, MPH; and Sanjay Basu, MD, PhD
Language Barriers and LDL-C/SBP Control Among Latinos With Diabetes
Alicia Fernandez, MD; E. Margaret Warton, MPH; Dean Schillinger, MD; Howard H. Moffet, MPH; Jenna Kruger, MPH; Nancy Adler, PhD; and Andrew J. Karter, PhD
Hepatitis C Care Cascade Among Persons Born 1945-1965: 3 Medical Centers
Joanne E. Brady, PhD; Claudia Vellozzi, MD, MPH; Susan Hariri, PhD; Danielle L. Kruger, BA; David R. Nerenz, PhD; Kimberly Ann Brown, MD; Alex D. Federman, MD, MPH; Katherine Krauskopf, MD, MPH; Natalie Kil, MPH; Omar I. Massoud, MD; Jenni M. Wise, RN, MSN; Toni Ann Seay, MPH, MA; Bryce D. Smith, PhD; Anthony K. Yartel, MPH; and David B. Rein, PhD
“Precision Health” for High-Need, High-Cost Patients
Dhruv Khullar, MD, MPP, and Rainu Kaushal, MD, MPH
From the Editorial Board: A. Mark Fendrick, MD
A. Mark Fendrick, MD
Health Literacy, Preventive Health Screening, and Medication Adherence Behaviors of Older African Americans at a PCMH
Anil N.F. Aranha, PhD, and Pragnesh J. Patel, MD
Early Experiences With the Acute Community Care Program in Eastern Massachusetts
Lisa I. Iezzoni, MD, MSc; Amy J. Wint, MSc; W. Scott Cluett III; Toyin Ajayi, MD, MPhil; Matthew Goudreau, BS; Bonnie B. Blanchfield, CPA, SM, ScD; Joseph Palmisano, MA, MPH; and Yorghos Tripodis, PhD
Currently Reading
Economic Evaluation of Patient-Centered Care Among Long-Term Cancer Survivors
JaeJin An, BPharm, PhD, and Adrian Lau, PharmD
High-Touch Care Leads to Better Outcomes and Lower Costs in a Senior Population
Reyan Ghany, MD; Leonardo Tamariz, MD, MPH; Gordon Chen, MD; Elissa Dawkins, MS; Alina Ghany, MD; Emancia Forbes, RDCS; Thiago Tajiri, MBA; and Ana Palacio, MD, MPH
Adjusting Medicare Advantage Star Ratings for Socioeconomic Status and Disability
Melony E. Sorbero, PhD, MS, MPH; Susan M. Paddock, PhD; Cheryl L. Damberg, PhD; Ann Haas, MS, MPH; Mallika Kommareddi, MPH; Anagha Tolpadi, MS; Megan Mathews, MA; and Marc N. Elliott, PhD

Economic Evaluation of Patient-Centered Care Among Long-Term Cancer Survivors

JaeJin An, BPharm, PhD, and Adrian Lau, PharmD
Providing patient-centered comprehensive care to long-term cancer survivors may lead to reduced total healthcare expenditures.
Check out our website’s new table/figure pop-up feature! Click on the name of a table or figure in the text to see it in your browser.
The findings of this study suggest that providing patient-centered comprehensive care may mitigate total healthcare utilization and subsequently reduce total healthcare expenditures among long-term cancer survivors in the United States. In the overall analysis, although there were no significant differences in healthcare utilization, there were significant reductions in adjusted mean healthcare expenditures at follow-up between the PCC group and the non-PCC group. Subgroup analyses suggest that the majority of the benefits of PCC were seen in the elderly population. In the subgroup of those 65 years and older, cancer survivors in the PCC group had 19% lower odds of hospitalization compared with the non-PCC group, and the savings were mostly from hospitalization-related healthcare expenditures. In the subgroup of those younger than 65 years, the benefits stemmed from reductions in prescription-related healthcare expenditures. These findings suggest that providing patient-centered comprehensive care might be more effective in the elderly population of cancer survivors than in the younger population. Elderly patients usually have more comorbidities and are likely to experience more hospitalizations or ED visits; therefore, patient-centered comprehensive care may play a bigger role in reducing overall healthcare costs. In this study, the population 65 years and older had a higher number of hospitalizations and ED visits compared with the population younger than 65 years, which might have driven our findings. These findings are also supported by previous literature that has suggested that reduction of hospital readmission rates and lowering of inpatient expenditures were more pertinent to the older adult population.26,36 However, this study was not able to further explain the reasoning behind these findings.

The secondary analysis performed in this study revealed that of the 3 hallmark attributes of a PCMH, the whole-person orientation attribute contributed the most to the reduction in total healthcare expenditures in long-term cancer survivors, whereas the comprehensive care and accessible care attributes were not associated with savings. This may be due to a ceiling effect for the comprehensive care and accessible care attributes, because their positive responses reached 98.3% and 93.7%, respectively, making it more difficult to assess if they impacted the economic outcomes.

The impact of the whole-person orientation attribute on reducing healthcare utilization and expenditures may be explained by the idea that as clinicians empower cancer survivors to become more engaged in the decision-making process of their own care, the patients become more responsible and adherent to those treatments. As a result, unnecessary healthcare expenditures stemming from treatment nonadherence are reduced. This finding was supported by further evaluating the whole-person orientation attribute in the secondary analysis, which showed significant decreases in total healthcare utilization, specifically in the odds of ED visits, in addition to decreases in ED visit–related healthcare expenditures and total healthcare expenditures.

The significant reductions in total healthcare expenditures and total healthcare utilization among the PCC group in this study, especially the reduced odds of hospitalization and reductions in hospitalization-related expenditures, were mostly consistent with findings from other similarly designed studies evaluating PCMHs. Findings of a study by Cuellar and colleagues suggested that a PCMH model, by the third year of its inception, resulted in lower rates of healthcare utilization and subsequently lower observed total healthcare expenditures.37 Likewise, a study by Cole and colleagues found diminished healthcare expenditures, as well as fewer hospitalizations, among Louisiana primary care clinics that have adopted the PCMH model in the management of their chronically ill patients.38 One study by Kohler and colleagues reached a different conclusion and found that patients with breast cancer in North Carolina actively receiving treatment in a PCMH model had higher total healthcare expenditures after initial diagnosis via increased total healthcare utilization, possibly due to greater access to their primary and specialty care teams compared with those who were not in a PCMH model.39

However, it is important to note that our study findings should be understood as the economic benefits associated with patient perceptions of their care instead of direct effects of implementation of a structured PCMH model. The definition of PCC relied on cancer survivors’ self-reported data; cancer survivors were considered to have received patient-centered comprehensive care if they provided positive responses to statements correlated with common characteristics of a PCMH model, rather than actual enrollment in a PCMH program. This patient perception may be affected by various factors, including characteristics of patients, individual physicians, or the practices in which patients received care. Although this study does not provide direct evidence from the implementation of a PCMH model, the indirect method of measurement may provide an advantage because it allows us to examine unique patient perspectives and compare each of the 3 hallmark attributes of the PCMH model and how each attribute can affect overall economic outcomes.

Limitations and Strengths

This study has several limitations. The PCMH attributes were potentially determined by both primary care and oncology care because the survey respondents did not specify whether their USC was their primary care provider or an oncologist. Therefore, study findings may not serve as evidence of patient perception of oncology care. Another limitation of this study is possible bias from unobserved confounding variables, as commonly seen with other observational studies. In this study, unobserved confounding variables, such as disease severity, may have affected the study findings rather than the PCC. However, observed confounding variables were adjusted with a PS model to maintain balance between the PCC group and the non-PCC group of cancer survivors. Other possible limitations of this study are nonresponse bias or recall bias, which are common in survey-type studies. Therefore, the analysis had to utilize only data that were readily available.

Despite these limitations, this study also has various strengths. To date, there have been a limited number of studies on the effects of implementing a PCMH model for patients with cancer and even fewer studies examining its effects on long-term cancer survivors. The findings derived from this study may be useful in the development of clinical programs for the care of long-term cancer survivors or in aiding the design of future PCMH models for managing other costly chronic conditions. In addition, this study utilized panel data to investigate the association between patient perceptions of PCMH characteristics at year 1 and economic outcomes at year 2, thereby minimizing limitations that would arise from a cross-sectional study when evaluating outcomes. In addition, a majority of cancer survivors (80%) did not change their responses to the questions on having received care attributable to PCMH characteristics at year 2, which suggests a continuation of similar types of care provided throughout the year. Furthermore, the unique patient perspectives obtained from a nationally representative sample may allow the results to be further applied and generalized to the broader US population.


The positive patient perception of PCMH characteristics was associated with reductions in mean total healthcare utilization and mean total healthcare expenditures among long-term cancer survivors. Future studies should further investigate the economic benefits of implementing a PCMH model for long-term cancer survivors through an interventional study design, in order to gain a better understanding of the origins of cost savings.

Author Affiliations: Department of Pharmacy Practice and Administration, Western University of Health Sciences College of Pharmacy (JA, AL), Pomona, CA.

Source of Funding: None.

Prior Presentation: Part of the study findings were presented as a poster at the Academy of Managed Care Pharmacy Managed Care & Specialty Pharmacy Annual Meeting 2017, Denver, Colorado, March 27-31, 2017.

Author Disclosures: The authors report no relationship or financial interest with any entity that would pose a conflict of interest with the subject matter of this article.

Authorship Information: Concept and design (JA); acquisition of data (JA); analysis and interpretation of data (JA, AL); drafting of the manuscript (JA, AL); critical revision of the manuscript for important intellectual content (JA, AL); statistical analysis (JA); provision of patients or study materials (JA); administrative, technical, or logistic support (JA); and supervision (JA).

Address Correspondence to: JaeJin An, BPharm, PhD, Department of Pharmacy Practice and Administration, Western University of Health Sciences College of Pharmacy, 309 E Second St, Pomona, CA 91766. Email:

1. U.S. Cancer Statistics data visualization tool. CDC website. Published June 2018. Accessed July 18, 2018.

2. Bluethmann SM, Mariotto AB, Rowland JH. Anticipating the “silver tsunami”: prevalence trajectories and comorbidity burden among older cancer survivors in the United States. Cancer Epidemiol Biomarkers Prev. 2016;25(7):1029-1036. doi: 10.1158/1055-9965.EPI-16-0133.

3. Defining cancer survivorship. National Coalition for Cancer Survivorship website. Published July 24, 2014. Accessed August 17, 2017.

4. Søgaard M, Thomsen RW, Bossen KS, Sørensen HT, Nørgaard M. The impact of comorbidity on cancer survival: a review. Clin Epidemiol. 2013;5(suppl 1):3-29. doi: 10.2147/CLEP.S47150.

5. Yabroff KR, Lund J, Kepka D, Mariotto A. Economic burden of cancer in the United States: estimates, projections, and future research. Cancer Epidemiol Biomarkers Prev. 2011;20(10):2006-2014. doi: 10.1158/1055-9965.EPI-11-0650.

6. Weaver KE, Rowland JH, Bellizzi KM, Aziz NM. Forgoing medical care because of cost: assessing disparities in healthcare access among cancer survivors living in the United States. Cancer. 2010;116(14):3493-3504. doi: 10.1002/cncr.25209.

7. Guy GP Jr, Ekwueme DU, Yabroff KR, et al. Economic burden of cancer survivorship among adults in the United States. J Clin Oncol. 2013;31(30):3749-3757. doi: 10.1200/JCO.2013.49.1241.

8. Patel K, Thoumi A, Nadel J, O’Shea J, McClellan M. Transforming oncology care: payment and delivery reform for person-centered care. Am J Manag Care. 2015;21(5):388-393.

9. American Academy of Family Physicians; American Academy of Pediatrics; American College of Physicians; American Osteopathic Association. Joint principles of the patient-centered medical home. American Academy of Family Physicians website. Published March 2007. Accessed August 17, 2017.

10. Berwick DM, Nolan TW, Whittington J. The triple aim: care, health, and cost. Health Aff (Millwood). 2008;27(3):759-769. doi: 10.1377/hlthaff.27.3.759.

11. McGinley EL, Gabbay RA. The impact of new payment models on quality of diabetes care and outcomes. Curr Diab Rep. 2016;16(6):51. doi: 10.1007/s11892-016-0743-5.

12. Domino ME, Humble C, Lawrence WW Jr, Wegner S. Enhancing the medical homes model for children with asthma. Med Care. 2009;47(11):1113-1120. doi: 10.1097/MLR.0b013e3181adcc65.

13. Beadles CA, Hassmiller Lich K, Viera AJ, Greene SB, Brookhart MA, Weinberger M. Patient-centered medical homes and oral anticoagulation therapy initiation. Med Care Res Rev. 2014;71(2):174-191. doi: 10.1177/1077558713510563.

14. Beadles CA, Farley JF, Ellis AR, et al. Do medical homes increase medication adherence for persons with multiple chronic conditions? Med Care. 2015;53(2):168-176. doi: 10.1097/MLR.0000000000000292.

15. Buchanan JR, Liang Q, Walsh C, Manolis CH, Perkins SE. Cholesterol medication adherence improvement in patient centered medical home primary care practices. Value Health. 2013;16(3):A292. doi: 10.1016/j.jval.2013.03.1513.

16. Green BB, Anderson ML, Chubak J, et al. Colorectal cancer screening rates increased after exposure to the patient-centered medical home (PCMH). J Am Board Fam Med. 2016;29(2):191-200. doi: 10.3122/jabfm.2016.02.150290.

17. Sprandio JD. Oncology patient-centered medical home. J Oncol Pract. 2012;8(suppl 3):47s-49s. doi: 10.1200/JOP.2012.000590.

18. Page RD, Newcomer LN, Sprandio JD, McAneny BL. The patient-centered medical home in oncology: from concept to reality. Am Soc Clin Oncol Educ Book. 2015:e82-e89. doi: 10.14694/EdBook_AM.2015.35.e82.

19. Cox JV, Sprandio JD, Barkley R. Understanding and surviving the transition to value-based oncology. Am Soc Clin Oncol Educ Book. 2013:e361. doi: 10.1200/EdBook_AM.2013.33.e361.

20. Medical Expenditure Panel Survey (MEPS). Agency for Healthcare Research and Quality website. Published August 2013. Accessed August 19, 2017.

21. Frick KD, Snyder CF, Herbert RJ, et al. Relationship between quality of comorbid condition care and costs for cancer survivors. J Oncol Pract. 2016;12(6):e734-e745. doi: 10.1200/JOP.2015.006098.

22. Bowdoin JJ, Rodriguez-Monguio R, Puleo E, Keller D, Roche J. Associations between the patient-centered medical home and preventive care and healthcare quality for non-elderly adults with mental illness: a surveillance study analysis. BMC Health Serv Res. 2016;16(1):434. doi: 10.1186/s12913-016-1676-z.

23. Jones AL, Cochran SD, Leibowitz A, Wells KB, Kominski G, Mays VM. Usual primary care provider characteristics of a patient-centered medical home and mental health service use. J Gen Intern Med. 2015;30(12):1828-1836. doi: 10.1007/s11606-015-3417-0.

24. Beal A, Hernandez S, Doty M. Latino access to the patient-centered medical home. J Gen Intern Med. 2009;24(suppl 3):514-520. doi: 10.1007/s11606-009-1119-1.

25. Jerant A, Fenton JJ, Franks P. Primary care attributes and mortality: a national person-level study. Ann Fam Med. 2012;10(1):34-41. doi: 10.1370/afm.1314.

26. Stockbridge EL, Philpot LM, Pagán JA. Patient-centered medical home features and expenditures by Medicare beneficiaries. Am J Manag Care. 2014;20(5):379-385.

27. Thompson NR, Fan Y, Dalton JE, et al. A new Elixhauser-based comorbidity summary measure to predict in-hospital mortality. Med Care. 2015;53(4):374-379. doi: 10.1097/MLR.0000000000000326.

28. Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav Res. 2011;46(3):399-424. doi: 10.1080/00273171.2011.568786.

29. Short PF, Moran JR, Punekar R. Medical expenditures of adult cancer survivors aged <65 years in the United States. Cancer. 2010;117(12):2791-2800. doi: 10.1002/cncr.25835.

30. Schrag D. The price tag on progress—chemotherapy for colorectal cancer. N Engl J Med. 2004;351(4):317-319. doi: 10.1056/NEJMp048143.

31. Tangka FK, Trogdon JG, Richardson LC, Howard D, Sabatino SA, Finkelstein EA. Cancer treatment cost in the United States: has the burden shifted over time? Cancer. 2010;116(14):3477-3484. doi: 10.1002/cncr.25150.

32. Woodward RM, Brown ML, Stewart ST, Cronin KA, Cutler DM. The value of medical interventions for lung cancer in the elderly: results from SEER-CMHSF. Cancer. 2007;110(11):2511-2518. doi: 10.1002/cncr.23058.

33. Howard DH, Kauh J, Lipscomb J. The value of new chemotherapeutic agents for metastatic colorectal cancer. Arch Intern Med. 2010;170(6):537-542. doi: 10.1001/archinternmed.2010.36.

34. Wong YN, Meropol NJ, Speier W, Sargent D, Goldberg RM, Beck JR. Cost implications of new treatments for advanced colorectal cancer. Cancer. 2009;115(10):2081-2091. doi: 10.1002/cncr.24246.

35. Elkin EB, Bach PB. Cancer’s next frontier: addressing high and increasing costs. JAMA. 2010;303(11):1086-1087. doi: 10.1001/jama.2010.283.

36. Stranges PM, Marshall VD, Walker PC, Hall KE, Griffith DK, Remington T. A multidisciplinary intervention for reducing readmissions among older adults in a patient-centered medical home. Am J Manag Care. 2015;21(2):106-113.

37. Cuellar A, Helmchen LA, Gimm G, et al. The CareFirst patient-centered medical home program: cost and utilization effects in its first three years. J Gen Intern Med. 2016;31(11):1382-1388. doi: 10.1007/s11606-016-3814-z.

38. Cole ES, Campbell C, Diana ML, Webber L, Culbertson R. Patient-centered medical homes in Louisiana had minimal impact on Medicaid population’s use of acute care and costs. Health Aff (Millwood). 2015;34(1):87-94. doi: 10.1377/hlthaff.2014.0582.

39. Kohler RE, Goyal RK, Lich KH, Domino ME, Wheeler SB. Association between medical home enrollment and health care utilization and costs among breast cancer patients in a state Medicaid program. Cancer. 2015;121(22):3975-3981. doi: 10.1002/cncr.29596.
Copyright AJMC 2006-2020 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
Welcome the the new and improved, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up