Currently Viewing:
The American Journal of Managed Care April 2019
Currently Reading
Time to Fecal Immunochemical Test Completion for Colorectal Cancer
Cameron B. Haas, MPH; Amanda I. Phipps, PhD; Anjum Hajat, PhD; Jessica Chubak, PhD; and Karen J. Wernli, PhD
Comment on Generalizability of GLP-1 RA CVOTs in US T2D Population
Maureen J. Lage, PhD
Authors’ Reply to “Comment on Generalizability of GLP-1 RA CVOTs in US T2D Population”
Eric T. Wittbrodt, PharmD, MPH; James M. Eudicone, MS, MBA; Kelly F. Bell, PharmD, MSPhr; Devin M. Enhoffer, PharmD; Keith Latham, PharmD; and Jennifer B. Green, MD
Deprescribing in the Context of Multiple Providers: Understanding Patient Preferences
Amy Linsky, MD, MSc; Mark Meterko, PhD; Barbara G. Bokhour, PhD; Kelly Stolzmann, MS; and Steven R. Simon, MD, MPH
The Health and Well-being of an ACO Population
Thomas E. Kottke, MD, MSPH; Jason M. Gallagher, MBA; Marcia Lowry, MS; Sachin Rauri, MS; Juliana O. Tillema, MPA; Jeanette Y. Ziegenfuss, PhD; Nicolaas P. Pronk, PhD, MA; and Susan M. Knudson, MA
Effect of Changing COPD Triple-Therapy Inhaler Combinations on COPD Symptoms
Nick Ladziak, PharmD, BCACP, CDE; and Nicole Paolini Albanese, PharmD, BCACP, CDE
Deaths Among Opioid Users: Impact of Potential Inappropriate Prescribing Practices
Jayani Jayawardhana, PhD; Amanda J. Abraham, PhD; and Matthew Perri, PhD
Do Health Systems Respond to the Quality of Their Competitors?
Daniel J. Crespin, PhD; Jon B. Christianson, PhD; Jeffrey S. McCullough, PhD; and Michael D. Finch, PhD
Impact of Clinical Training on Recruiting Graduating Health Professionals
Sheri A. Keitz, MD, PhD; David C. Aron, MD; Judy L. Brannen, MD; John M. Byrne, DO; Grant W. Cannon, MD; Christopher T. Clarke, PhD; Stuart C. Gilman, MD; Debbie L. Hettler, OD, MPH; Catherine P. Kaminetzky, MD, MPH; Robert A. Zeiss, PhD; David S. Bernett, BA; Annie B. Wicker, BS; and T. Michael Kashner, PhD, JD
Does Care Consultation Affect Use of VHA Versus Non-VHA Care?
Robert O. Morgan, PhD; Shweta Pathak, PhD, MPH; David M. Bass, PhD; Katherine S. Judge, PhD; Nancy L. Wilson, MSW; Catherine McCarthy; Jung Hyun Kim, PhD, MPH; and Mark E. Kunik, MD, MPH
Continuity of Outpatient Care and Avoidable Hospitalization: A Systematic Review
Yu-Hsiang Kao, PhD; Wei-Ting Lin, PhD; Wan-Hsuan Chen, MPH; Shiao-Chi Wu, PhD; and Tung-Sung Tseng, DrPH

Time to Fecal Immunochemical Test Completion for Colorectal Cancer

Cameron B. Haas, MPH; Amanda I. Phipps, PhD; Anjum Hajat, PhD; Jessica Chubak, PhD; and Karen J. Wernli, PhD
Targeted interventions by patient characteristics to improve fecal immunochemical test completion could reduce disparities in colorectal cancer screening and improve overall compliance with screening recommendations.
Our findings regarding differences by race/ethnicity contrast with those of previous studies, which have suggested lower rates of CRC screening among people of color and lower completion of FITs, specifically for black and Hispanic individuals.39,40 Burnett-Hartman et al evaluated in stratified analyses the entire PROSPR network, indicating disparities in completion by race39; our results, however, support results in stratified analysis suggesting that Asian/Pacific Islanders are the earliest both to complete a FIT and to complete CRC screening overall. Results by other racial groups are similar to the stratified analysis but not for the pooled analysis reflective of larger samples in other systems. In our population, non-Hispanic black patients were more likely to complete FIT screening than non-Hispanic white patients. This is contrary to findings of previous studies, which have stated that a considerable proportion of the disparities in overall CRC survival between black and white patients might be attributable to differences in screening.41 However, our results are consistent with those of a recent randomized clinical trial that found that nonwhite participants were more likely to adhere to gFOBT than white participants, whereas white participants adhered more often to colonoscopy.42 As use of colonoscopy is generally more common than gFOBT/FIT for CRC screening in fee-for-service systems, this could explain part of the overall disparity in CRC screening adherence among minority populations.

It is important to note that completing a FIT is only 1 step in the CRC screening continuum, and a positive FIT requires a follow-up colonoscopy, which might incur out-of-pocket costs, even for insured patients.43 The potential for disparities in such follow-up merits further investigation. A recent study conducted at KPWA using mailed FITs and support over the phone was shown to double the number of adults who were currently compliant with CRC screening recommendations.27 Mailed outreach was effective for improving rates of CRC screening among underserved populations and had a markedly higher effect on screening with FITs compared with invitation for colonoscopy.44 Results from another study suggested that improved CRC screening will most likely be achieved through optimizing the time during current primary care visits rather than through outreach to encourage patients to attend primary care visits.42,45

Strengths and Limitations

Our study has several strengths in methodology, including a sufficient sample size to evaluate patient characteristics, data systems to capture return of FIT kits with a contemporary sample, and ability to ascertain patient covariates as confounders in the analysis. However, there are some limitations because of our study population that may limit the generalizability of our findings. It is important to recognize that ours is an insured population. Our results might not reflect the experience of uninsured or underinsured adults who may not have access to consistent healthcare. As a screening test, a FIT is a covered service under the Affordable Care Act; thus, included members should not have experienced any direct expense associated with completing a FIT during the study period.1,46 Despite federally mandated coverage, nonparticipation in CRC screening has been shown to be associated with concern for out-of-pocket costs among insured people with low socioeconomic status or in racial minority populations.43 However, for those who are uninsured, FIT use may be the most economically feasible method of receiving CRC screening. We primarily investigated patient characteristics for which previous research has asserted disparities in screening compliance. The VDW is limited in the ability to explore the reasons behind the observed patterns, but this research provides an important groundwork for future design for interventions to improve overall completion.


To our knowledge, this is the first study to assess screening completion based on return of FITs following clinician order. This research is important to reach the Healthy People 2020 goal of 70.5% completion of CRC screening and is a valuable contribution to the existing knowledge on CRC screening to reduce underuse.37 We have demonstrated that among adults eligible for CRC screening, the majority of those who complete the test do so within 2 weeks of the order. Of note, we did observe higher rates of FIT completion by nonwhite race/ethnicity. Targeted interventions, beyond mailed kits, and clinic workflows to improve return of FITs should be investigated as potential means to increase overall return rates and address disparities by patient characteristics such as obesity and age.


This study’s contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Cancer Institute, the National Institutes of Health, or the Agency for Healthcare Research and Quality.

Author Affiliations: Kaiser Permanente Washington Health Research Institute (CBH, JC, KJW), Seattle, WA; Department of Epidemiology, University of Washington (CBH, AIP, AH, JC), Seattle, WA; Fred Hutchinson Cancer Research Center (CBH, AIP), Seattle, WA.

Source of Funding: Research in this publication was supported by the National Cancer Institute of the National Institutes of Health under award number U54 CA163261 and award number T32 CA094880 (“Cancer Prevention Training: Epidemiology, Nutrition, Genetics & Survivorship”) to Mr Haas.

Author Disclosures: Drs Chubak and Wernli are employees of Kaiser Permanente Washington, have received several grants on colorectal cancer, and present on colorectal cancer research at meetings and conferences. The remaining authors report no relationship or financial interest with any entity that would pose a conflict of interest with the subject matter of this article.

Authorship Information: Concept and design (CBH, AH, KJW); acquisition of data (JC, KJW); analysis and interpretation of data (CBH, AIP, JC, KJW); drafting of the manuscript (CBH, AIP, KJW); critical revision of the manuscript for important intellectual content (CBH, AIP, AH, JC, KJW); statistical analysis (CBH); provision of patients or study materials (KJW); obtaining funding (JC, KJW); administrative, technical, or logistic support (KJW); and supervision (AH, KJW).

Address Correspondence to: Cameron B. Haas, MPH, Kaiser Permanente Washington Health Research Institute, 1730 Minor Ave, Ste 1600, Seattle, WA 98101. Email:

1. Bibbins-Domingo K, Grossman DC, Curry SJ, et al; US Preventive Services Task Force. Screening for colorectal cancer: US Preventive Services Task Force recommendation statement [erratum in JAMA. 2016;316(5):545. doi: 10.1001/jama.2016.9943] [erratum in JAMA. 2017;317(21):2239. doi: 10.1001/jama.2017.5918]. JAMA. 2016;315(23):2564-2575. doi: 10.1001/jama.2016.5989.

2. Church TR. Screening for colorectal cancer—which strategy is the best? J Natl Cancer Inst. 2011;103(17):1282-1283. doi: 10.1093/jnci/djr300.

3. Knudsen AB, Zauber AG, Rutter CM, et al. Estimation of benefits, burden, and harms of colorectal cancer screening strategies: modeling study for the US Preventive Services Task Force. JAMA. 2016;315(23):2595-2609. doi: 10.1001/jama.2016.6828.

4. Levin B, Lieberman DA, McFarland B, et al; American Cancer Society Colorectal Cancer Advisory Group; US Multi-Society Task Force; American College of Radiology Colon Cancer Committee. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. Gastroenterology. 2008;134(5):1570-1595. doi: 10.1053/j.gastro.2008.02.002.

5. Levin TR, Jamieson L, Burley DA, Reyes J, Oehrli M, Caldwell C. Organized colorectal cancer screening in integrated health care systems. Epidemiol Rev. 2011;33:101-110. doi: 10.1093/epirev/mxr007.

6. Allison JE, Fraser CG, Halloran SP, Young GP. Comparing fecal immunochemical tests: improved standardization is needed. Gastroenterology. 2012;142(3):422-424. doi: 10.1053/j.gastro.2012.01.015.

7. Haug U, Brenner H. A simulation model for colorectal cancer screening: potential of stool tests with various performance characteristics compared with screening colonoscopy. Cancer Epidemiol Biomarkers Prev. 2005;14(2):422-428. doi: 10.1158/1055-9965.EPI-04-0411.

8. Haug U, Brenner H. New stool tests for colorectal cancer screening: a systematic review focusing on performance characteristics and practicalness. Int J Cancer. 2005;117(2):169-176. doi: 10.1002/ijc.21016.

9. Lin JS, Piper MA, Perdue LA, et al. Screening for colorectal cancer: updated evidence report and systematic review for the US Preventive Services Task Force [erratum in JAMA. 2016;316(5):545. doi: 10.1001/jama.2016.9941] [erratum in JAMA. 2016;316(13):1412. doi: 10.1001/jama.2016.13819]. JAMA. 2016;315(23):2576-2594. doi: 10.1001/jama.2016.3332.

10. Vasilyev S, Smirnova E, Popov D, et al. A new-generation fecal immunochemical test (FIT) is superior to quaiac-based test in detecting colorectal neoplasia among colonoscopy referral patients. Anticancer Res. 2015;35(5):2873-2880.

11. Dancourt V, Lejeune C, Lepage C, Gailliard MC, Meny B, Faivre J. Immunochemical faecal occult blood tests are superior to guaiac-based tests for the detection of colorectal neoplasms. Eur J Cancer. 2008;44(15):2254-2258. doi: 10.1016/j.ejca.2008.06.041.

12. Hol L, van Leerdam ME, van Ballegooijen M, et al. Screening for colorectal cancer: randomised trial comparing guaiac-based and immunochemical faecal occult blood testing and flexible sigmoidoscopy. Gut. 2010;59(1):62-68. doi: 10.1136/gut.2009.177089.

13. Huang Y, Li Q, Ge W, Cai S, Zhang S, Zheng S. Predictive power of quantitative and qualitative fecal immunochemical tests for hemoglobin in population screening for colorectal neoplasm. Eur J Cancer Prev. 2014;23(1):27-34. doi: 10.1097/CEJ.0b013e328364f229.

14. Imperiale TF. Noninvasive screening tests for colorectal cancer. Dig Dis. 2012;30(suppl 2):16-26. doi: 10.1159/000341884.

15. Imperiale TF, Ransohoff DF, Itzkowitz SH, Turnbull BA, Ross ME; Colorectal Cancer Study Group. Fecal DNA versus fecal occult blood for colorectal-cancer screening in an average-risk population. N Engl J Med. 2004;351(26):2704-2714. doi: 10.1056/NEJMoa033403.

16. Lejeune C, Le Gleut K, Cottet V, et al. The cost-effectiveness of immunochemical tests for colorectal cancer screening. Dig Liver Dis. 2014;46(1):76-81. doi: 10.1016/j.dld.2013.07.018.

17. Young GP, Fraser CG, Halloran SP, Cole S. Guaiac based faecal occult blood testing for colorectal cancer screening: an obsolete strategy? Gut. 2012;61(7):959-960. doi: 10.1136/gutjnl-2011-301810.

18. Anhang Price R, Zapka J, Edwards H, Taplin SH. Organizational factors and the cancer screening process. J Natl Cancer Inst Monogr. 2010;2010(40):38-57. doi: 10.1093/jncimonographs/lgq008.

19. Wernli KJ, Hubbard RA, Johnson E, et al. Patterns of colorectal cancer screening uptake in newly eligible men and women. Cancer Epidemiol Biomarkers Prev. 2014;23(7):1230-1237. doi: 10.1158/1055-9965.EPI-13-1360.

20. Smith RA, Manassaram-Baptiste D, Brooks D, et al. Cancer screening in the United States, 2015: a review of current American cancer society guidelines and current issues in cancer screening. CA Cancer J Clin. 2015;65(1):30-54. doi: 10.3322/caac.21261.

21. Tiro JA, Kamineni A, Levin TR, et al. The colorectal cancer screening process in community settings: a conceptual model for the Population-Based Research Optimizing Screening through Personalized Regimens consortium. Cancer Epidemiol Biomarkers Prev. 2014;23(7):1147-1158. doi: 10.1158/1055-9965.EPI-13-1217.

22. Chubak J, Bogart A, Fuller S, Laing SS, Green BB. Uptake and positive predictive value of fecal occult blood tests: a randomized controlled trial. Prev Med. 2013;57(5):671-678. doi: 10.1016/j.ypmed.2013.08.032.

23. Population-based Research to Optimize the Screening Process (PROSPR). National Cancer Institute website. Updated January 10, 2019. Accessed February 13, 2018.

24. Ross TR, Ng D, Brown JS, et al. The HMO Research Network Virtual Data Warehouse: a public data model to support collaboration. EGEMS (Wash DC). 2014;2(1):1049. doi: 10.13063/2327-9214.1049.

25. Beebe M. CPT 2009: Current Procedural Terminology. Chicago, IL: American Medical Association; 2008.

26. HCPCS 2009: Medicare’s National Level II Codes. Chicago, IL: American Medical Association; 2008.

27. Green BB, Wang CY, Anderson ML, et al. An automated intervention with stepped increases in support to increase uptake of colorectal cancer screening: a randomized trial. Ann Intern Med. 2013;158(5, pt 1):301-311. doi: 10.7326/0003-4819-158-5-201303050-00002.

28. Hornbrook MC, Hart G, Ellis JL, et al. Building a virtual cancer research organization. J Natl Cancer Inst Monogr. 2005;(35):12-25. doi: 10.1093/jncimonographs/lgi033.

29. Klabunde CN, Potosky AL, Legler JM, Warren JL. Development of a comorbidity index using physician claims data. J Clin Epidemiol. 2000;53(12):1258-1267. doi: 10.1016/S0895-4356(00)00256-0.

30. BMI classification. World Health Organization website. Published May 16, 2016. Accessed February 13, 2018.

31. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373-383.

32. Breslow N. Covariance analysis of censored survival data. Biometrics. 1974;30(1):89-99. doi: 10.2307/2529620.

33. Farraye FA, Wong M, Hurwitz S, et al. Barriers to endoscopic colorectal cancer screening: are women different from men? Am J Gastroenterol. 2004;99(2):341-349.

34. Friedemann-Sánchez G, Griffin JM, Partin MR. Gender differences in colorectal cancer screening barriers and information needs. Health Expect. 2007;10(2):148-160. doi: 10.1111/j.1369-7625.2006.00430.x.

35. Fedewa SA, Cullati S, Bouchardy C, et al. Colorectal cancer screening in Switzerland: cross-sectional trends (2007-2012) in socioeconomic disparities. PLoS One. 2015;10(7):e0131205. doi: 10.1371/journal.pone.0131205.

36. Persky S, de Heer HD, McBride CM, Reid RJ. The role of weight, race, and health care experiences in care use among young men and women. Obesity (Silver Spring). 2014;22(4):1194-1200. doi: 10.1002/oby.20677.

37. Fedewa SA, Ma J, Sauer AG, et al. How many individuals will need to be screened to increase colorectal cancer screening prevalence to 80% by 2018? Cancer. 2015;121(23):4258-4265. doi: 10.1002/cncr.29659.

38. Johnson CM, Wei C, Ensor JE, et al. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control. 2013;24(6):1207-1222. doi: 10.1007/s10552-013-0201-5.

39. Burnett-Hartman AN, Mehta SJ, Zheng Y, et al; PROSPR Consortium. Racial/ethnic disparities in colorectal cancer screening across healthcare systems. Am J Prev Med. 2016;51(4):e107-e115. doi: 10.1016/j.amepre.2016.02.025.

40. Fedewa SA, Corley DA, Jensen CD, et al. Colorectal cancer screening initiation after age 50 years in an organized program. Am J Prev Med. 2017;53(3):335-344. doi: 10.1016/j.amepre.2017.02.018.

41. Lansdorp-Vogelaar I, Kuntz KM, Knudsen AB, van Ballegooijen M, Zauber AG, Jemal A. Contribution of screening and survival differences to racial disparities in colorectal cancer rates. Cancer Epidemiol Biomarkers Prev. 2012;21(5):728-736. doi: 10.1158/1055-9965.EPI-12-0023.

42. Inadomi JM, Vijan S, Janz NK, et al. Adherence to colorectal cancer screening: a randomized clinical trial of competing strategies. Arch Intern Med. 2012;172(7):575-582. doi: 10.1001/archinternmed.2012.332.

43. Green BB, Bogart A, Chubak J, et al. Nonparticipation in a population-based trial to increase colorectal cancer screening. Am J Prev Med. 2012;42(4):390-397. doi: 10.1016/j.amepre.2011.11.014.

44. Gupta S, Halm EA, Rockey DC, et al. Comparative effectiveness of fecal immunochemical test outreach, colonoscopy outreach, and usual care for boosting colorectal cancer screening among the underserved: a randomized clinical trial. JAMA Intern Med. 2013;173(18):1725-1732. doi: 10.1001/jamainternmed.2013.9294.

45. Fenton JJ, Reid RJ, Baldwin LM, Elmore JG, Buist DS, Franks P. Influence of primary care use on population delivery of colorectal cancer screening. Cancer Epidemiol Biomarkers Prev. 2009;18(2):640-645. doi: 10.1158/1055-9965.EPI-08-0765.

46. Seiler N, Malcarney MB, Horton K, Dafflitto S. Coverage of clinical preventive services under the Affordable Care Act: from law to access. Public Health Rep. 2014;129(6):526-532. doi: 10.1177/003335491412900611.
Copyright AJMC 2006-2020 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
Welcome the the new and improved, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up