Currently Viewing:
Supplements A Managed Care Perspective on Scientific Advances in Amyotrophic Lateral Sclerosis
Currently Reading
Amyotrophic Lateral Sclerosis: Disease State Overview
Darrell Hulisz, PharmD, RPh
ALS Managed Care Considerations
Briana Santaniello, PharmD, MBA
Participating Faculty
Posttest

Amyotrophic Lateral Sclerosis: Disease State Overview

Darrell Hulisz, PharmD, RPh
A case-control study by Harrison et al described 36 patients with ALS classified as “ALS reversals” who were compared with 10,723 patients from the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) database.56 Of the control group, 6352 patients had available family history and demographic data available for comparison. Twenty-three patients were diagnosed with clinically probable lab-supported or clinically probable ALS, 7 with PMA, 4 with definite ALS, and 2 with clinically possible ALS. Twenty patients’ diagnoses were verified by chart review and 16 patients through review of the literature. Reversals were measured by ALSFRS-R gains of at least 4 points, denervation resolution as determined by EMG, and/or improved manual muscle testing strength. When compared with the control group, patients with ALS reversal were more likely to take curcumin, copper, azathioprine, fish oil, vitamin D, and glutathione. However, this finding should not be interpreted as a definite correlation, but as a possible hypothesis for future studies. The authors concluded that although all the patients with ALS reversal did not have El Escorial clinically definite ALS diagnoses, the possibility of ALS was high. They additionally suggested that the patients with ALS reversal may have genetic mutations, leading to disease “reversal” via reinnervation, and whole genome sequencing will be performed to further explore this theory. Studying these patients with reversal may lead to a better understanding of ALS and treatments that delay and ultimately cure the disease.

Best Practices

A patient with ALS wrote, “ALS patients can have a zeal for life rare among patients with other diseases. Shorter life expectancy often spurs patients with ALS to make life experiences and relationships deeper. It is helpful to understand the concept that ‘everyone has a wheelchair,’ and that no one avoids life’s crises forever.”12 This quote is a silver lining in the struggles experienced by patients with ALS. It illustrates that despite patients having to accept the challenges of ALS, they should maximize their potential and time. To assist patients with better management, guidance with best practice recommendations has been developed. The ALS Worldwide guidance includes a multidisciplinary approach to manage symptoms and provide patient support.57 Multidisciplinary team members may include neurologists; pulmonologists; respiratory, occupational, physical, massage, and speech therapists; social workers; nutritionists; support organizations; behavioral health specialists; and pharmacists. According to a review by the Quality Standards Subcommittee of the American Academy of Neurology (AAN), specialized multidisciplinary teams should be considered for patients with ALS to potentially decrease mortality (level B), increase quality of life (level C), and optimize the delivery of healthcare (level B).11 Additionally, the team may support the organization with achieving performance measures developed by the AAN. The measures include developing and updating a multidisciplinary care plan; cognitive and behavioral impairment screening; offering of therapies for ALS symptoms; inquiring about the patient’s respiratory status and referring the patient for pulmonary function testing; screening for impaired nutrition, weight loss, and dysphagia; offering nutritional support; communicating support referral; reviewing disease-modifying pharmacotherapy; discussing noninvasive ventilation treatment with respiratory-insufficient patients; assisting with end-of-life planning; and assessing the patient for falls.58

Neurologists assess, monitor, and treat patients. They are also involved in clinical trials and research that may be beneficial to the patient. The respiratory team, consisting of pulmonologists and respiratory therapists, provides patients with respiratory support because breathing issues are a key symptom in progressive ALS. Occupational therapists are essential to identifying a patient’s challenges with ADLs and assisting them with modifying their current practices or overcoming these challenges. Despite earlier beliefs that exercise damages muscles in patients with ALS, it has been proven to help muscles maintain their power and energy, and the lack of exercise can be harmful. However, patients are usually advised to maintain their current activity level if they are able to do so safely and comfortably.59 Physical therapists are best suited to assist patients with achieving their exercise capacity. Even though massage may be considered a luxury, it is beneficial to both patients and caregivers due to the physical strain of the disease. Caregivers often lift heavy items and regularly shift patients. Because patients are at risk from aspiration due to loss of muscle function, speech therapists not only assist with language, but also assess the patient’s capability to chew and swallow food.

Social workers assist with direction on the navigation of the social services system, end-of life-planning, such as advanced directives, and other available resources, such as transportation and support groups for both the patient and patient’s caregiver. Considering that maintaining adequate nutritional stores and caloric intake is essential to life, nutritionists are key members of the team. Support organizations are available to assist the patient, caregiver, and researcher. Such organizations include the ALS Association, Muscular Dystrophy Association (MDA), and Motor Neurone Disease Association. Psychosocial support, especially from professionals who understand patients with ALS, is beneficial for the patient, patients’ family, and caregiver. The patient may need support making decisions on matters such as making advanced directives. Additionally, the clinic coordinator may assist the patient with the navigation of the medical process, answering questions, collecting information to relay to the respective healthcare professionals, and addressing the patient’s needs and desires.57

The pharmacist is responsible for managing the medication-related aspect of the patient’s care, educating the patient, and assessing the patient’s medication regimen for potential errors, cost savings, adherence, and preference.57 In a study by Jefferies et al, the 2 major interventions performed by a clinical pharmacist participating on a multidisciplinary ALS team were optimizing medication regimens to manage the symptoms of ALS and medication monitoring.60 Additionally, the pharmacist’s interventions allowed more time for the neurologist to focus on neurological complaints. In general, the pharmacists may also be involved in deprescribing, determining the best medication formulations and delivery devices based on the patient’s current level of functioning and physical abilities, and assisting with medication alternatives based on the insurance formularies.

In addition to the items mentioned above, patients may need genetic counseling. Patients with familial ALS may have genetic testing performed. After taking a thorough medical and family history, a genetic counselor will walk the patient through risk evaluation and genetic testing impact.61 The Genetic Information Nondiscrimination Act of 2008 prohibits genetic discrimination from health insurance providers and employers, but not disability, life, and long-term care insurance.62

There are several diseases with symptoms similar to ALS, and most of these conditions are treatable. Because of this, the ALS Association recommends that a person diagnosed with ALS seek a second opinion from an ALS expert—someone who diagnoses and treats many patients with ALS and has training in this medical specialty.33 The ALS Association maintains a list of recognized experts in the field of ALS. Also, local ALS Association chapters or the national office may be contacted. Groups that provide support for patients and research include the ALS Association, the MDA, and the Les Turner ALS Foundation.12

Early diagnosis, participation in clinical trials, being able to identify signs and symptoms, and referral to a multidisciplinary specialty clinic are considered best practices.57 The Centers for Disease Control and Prevention (CDC)’s National Amyotrophic Lateral Sclerosis (ALS) Registry is the only population-based registry in the United States that gathers information for the purpose of studying ALS.63 Goals of the registry include estimating the incidence and prevalence of ALS, studying risk factors associated with ALS, and providing a database for research to improve the care of patients with ALS.64 The registry collects information, such as gender, age, physical activity, family history, military service information, work history, and environmental and occupational risk factors.64 In addition to collecting survey information, the CDC collects and stores the biological samples of the National ALS Registry patients in the National ALS Biorepository.65 The type of biological samples collected includes proteins, blood, DNA, urine, cells, and tissue.65 The collection also includes a postmortem component involving the collection of bone, brain, skin, spinal cord, muscle, and cerebral spinal fluid.65 Informing patients about these registries and the impact of their involvement on the future of ALS may lead to discovery of more about various aspects of ALS, such as improved knowledge and treatments.

Conclusions

ALS is a devastating disease. It is difficult to diagnose, debilitating, and has a short survival and poor prognosis for most patients. Unfortunately, there is currently no cure. With the invention of DNA technology, several potential therapy targets have been identified. Through the advancements of medicine and voluntary enrollment of patients with ALS into registries, a better understanding of ALS and therapies will ensue. In the interim, patients should be referred to a multidisciplinary team who will assist them, their families, and caregivers with managing the disease.

Author affiliation: Associate Professor, Department of Family Medicine, Case Western Reserve University School of Medicine; Clinical Pharmacy Specialist, University Hospitals Medical Group, Cleveland, OH.
Funding source: This activity is supported by educational funding provided by Mitsubishi Tanabe Pharma America, Inc. 
Author disclosure: Dr Hulisz has no relevant financial relationships with commercial interests to disclose.
Authorship information: Concept and design; critical revision of the manuscript for important intellectual content; and administrative, technical, or logistic support.
Address correspondence to: dth4@case.edu.
Dr Hulisz gratefully acknowledges Kisha O’Neal Gant, PharmD, for her contributions to the development of this article. 
 
1. Brown RH, Al-Chalabi A. Amyotrophic lateral sclerosis. N Engl J Med. 2017;377(2):162-172. doi: 10.1056/NEJMra1603471.
2. Motor neuron diseases fact sheet. National Institute of Neurological Disorders and Stroke website. ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Motor-Neuron-Diseases-Fact-Sheet. Updated July 6, 2018. Accessed July 12, 2018.
3. What is ALS? ALS Association website. alsa.org/about-als/what-is-als.html. Published 2018. Accessed May 22, 2018.
4. Kumar DR, Aslinia F, Yale SH, Mazza JJ. Jean-Martin Charcot: the father of neurology. Clin Med Res. 2011;9(1):46-49. doi: 10.3121/cmr.2009.883.
5. Goetz CG. Amyotrophic lateral sclerosis: early contributions of Jean-Martin Charcot. Muscle Nerve. 2000;23(3):336-343. doi: 10.1002/(SICI)1097-4598(200003)23:3<336::AID-MUS4>3.0.CO;2-L.
6. Turner MR, Swash M. The expanding syndrome of amyotrophic lateral sclerosis: a clinical and molecular odyssey. J Neurol Neurosurg Psychiatry. 2015;86(6):667-673. doi: 10.1136/jnnp-2014-308946.
7. Tan SY, Shigaki D. Jean-Martin Charcot (1825-1893): pathologist who shaped modern neurology. Singapore Med J. 2007;48(5):383-384.
8. Ferguson TA, Elman LB. Clinical presentation and diagnosis of amyotrophic lateral sclerosis. NeuroRehabilitation. 2007;22(6):409-416.
9. Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314(5796):130-133. doi: 10.1126/science.1134108.
10. Taylor JP, Brown RH Jr, Cleveland DW. Decoding ALS: from genes to mechanism. Nature. 2016;539(7628):197-206. doi: 10.1038/nature20413.
11. Miller RG, Jackson CE, Kasarskis EJ, et al; Quality Standards Subcommittee of the American Academy of Neurology. Practice parameter update: the care of the patient with amyotrophic lateral sclerosis: multidisciplinary care, symptom management, and cognitive/behavioral impairment (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2009;73(15):1227-1233. doi: 10.1212/WNL.0b013e3181bc01a4.
12. Mehta P, Horton DK, Kasarskis EJ, et al. CDC Grand Rounds: National Amyotrophic Lateral Sclerosis (ALS) Registry impact, challenges, and future directions. MMWR Morb Mortal Wkly Rep. 2017;66(50):1379-1382. doi: 10.15585/mmwr.mm6650a3.
13. About ALS. ALS Association website. alsa.org/about-als/facts-you-should-know.html. Updated June 2016. Accessed May 21, 2018.
14. Kiernan MC, Vucic S, Cheah BC, et al. Amyotrophic lateral sclerosis. Lancet. 2011:377(9769):942-955. doi: 10.1016/S0140-6736(10)61156-7.
15. Talbot K. The bare essentials: motor neuron disease. Pract Neurol. 2009;9(5):303-309.
doi: 10.1136/jnnp.2009.188151.
16. Motor neurone disease: assessment and management. National Institute for Health and Care Excellence (NICE) Guideline No. 42. U.S. National Library of Medicine website. ncbi.nlm.nih.gov/pubmedhealth/PMH0085665. Published 2016. Accessed July 13, 2018.
17. Mehta P, Kaye W, Raymond J, et al. Prevalence of amyotrophic lateral sclerosis—United States, 2014. MMWR Morb Mortal Wkly Rep. 2018;67(7):216-218. doi: 10.15585/mmwr.mm6707a3.
18. Chiò A, Logroscino G, Traynor BJ, et al. Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology. 2013;41(2):118-130. doi: 10.1159/000351153.
19. US Census Bureau. 2012-2016 American Community Survey 5-year estimates. factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_16_5YR_DP05&src=pt. Accessed May 20, 2018.
20. Beghi E, Logroscino G, Chiò A, et al. Amyotrophic lateral sclerosis, physical exercise, trauma and sports: results of a population-based pilot case-control study. Amyotroph Lateral Scler. 2010;11(3):289-292. doi: 10.3109/17482960903384283.
21. Kang H, Cha ES, Choi GJ, Lee WJ. Amyotrophic lateral sclerosis and agricultural environments:
a systematic review. J Korean Med Sci. 2014;29(12):1610-1617. doi: 10.3346/jkms.2014.29.12.1610.
22. Roberts AL, Johnson NJ, Chen JT, Cudkowicz ME, Weisskopf MG. Race/ethnicity, socioeconomic status, and ALS mortality in the United States. Neurology. 2016;87(22):2300-2308. doi: 10.1212/WNL.0000000000003298.
23. Horner RD, Kamins KG, Feussner JR, et al. Occurrence of amyotrophic lateral sclerosis among Gulf War veterans. Neurology. 2003;61(6):742-749. doi: 10.1212/01.WNL.0000069922.32557.CA.
24. Ingre C, Roos PM, Piehl F, Kamel F, Fang F. Risk factors for amyotrophic lateral sclerosis. Clin Epidemiol. 2015;7:181-193. doi: 10.2147/CLEP.S37505.
25. Al-Chalabi A, Hardiman O. The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol. 2013;9(11):617-628. doi: 10.1038/nrneurol.2013.203.
26. Morgan S, Orrell RW. Pathogenesis of amyotrophic lateral sclerosis. Br Med Bull. 2016;119(1):87-98. doi: 10.1093/bmb/ldw026.
27. Mulder DW, Kurland LT, Offord KP, Beard CM. Familial adult motor neuron disease: amyotrophic lateral sclerosis. Neurology. 1986;36(4):511-517.
28. ALS: amyotrophic lateral sclerosis: causes/inheritance. Muscular Dystrophy Association website. mda.org/disease/amyotrophic-lateral-sclerosis/causes-inheritance. Published 2018. Accessed May 21, 2018.
29. Gordon PH, Cheng B, Katz IB, et al. The natural history of primary lateral sclerosis. Neurology. 2006;66(5):647-653. doi: 10.1212/01.wnl.0000200962.94777.71.
30. Ludolph A, Drory V, Hardiman O, et al; WFN Research Group on ALS/MND. A revision of the
El Escorial criteria—2015. Amyotroph Lateral Scler Frontotemporal Degener. 2015;16(5-6):291-292.
doi: 10.3109/21678421.2015.1049183.
31. Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. N Engl J Med. 2001;344(22):1688-1700. doi: 10.1056/NEJM200105313442207.
32. Al-Chalabi A, Hardiman O, Kiernan MC, Chiò A, Rix-Brooks B, van den Berg LH. Amyotrophic lateral sclerosis: moving towards a new classification system. Lancet Neurol. 2016;15(11):1182-1194. doi: 10.1016/S1474-4422(16)30199-5.
33. Amyotrophic lateral sclerosis (ALS) fact sheet. National Institute of Neurological Disorders and Stroke website. ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Amyotrophic-Lateral-Sclerosis-ALS-Fact-Sheet. Updated July 6, 2018. Accessed July 12, 2018.
34. ALS CNTF treatment study (ACTS) phase I-II Study Group. The Amyotrophic Lateral Sclerosis Functional Rating Scale: assessment of activities of daily living in patients with amyotrophic lateral sclerosis. Arch Neurol. 1996;53(2):141-147. doi: 10.1001/archneur.1996.00550020045014.
35. Cedarbaum JM, Stambler N, Malta E, et al; BDNF ALS Study Group (Phase III). The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. J Neurol Sci. 1999;169(1-2):13-21. doi: 10.1016/S0022-510X(99)00210-5.
36. Arcila-Londono X, Lewis RA. Multifocal motor neuropathy. Handb Clin Neurol. 2013;115:429-442. doi: 10.1016/B978-0-444-52902-2.00024-2.
37. Rezania K, Roos RP. Spinal cord: motor neuron diseases. Neurol Clin. 2013;31(1):219-239. doi: 10.1016/j.ncl.2012.09.014.
38. Bang J, Spina S, Miller BL. Frontotemporal dementia. Lancet. 2015;386(10004):1672-1682. doi: 10.1016/S0140-6736(15)00461-4.
39. Agosta F, Al-Chalabi A, Filippi M, et al; WFN Research Group on ALS/MND. The El Escorial
criteria: strengths and weaknesses. Amyotroph Lateral Scler Frontotemporal Degener. 2015;16(1-2):1-7.
doi: 10.3109/21678421.2014.964258.
40. Costa J, Swash M, de Carvalho M. Awaji criteria for the diagnosis of amyotrophic lateral sclerosis:
a systematic review. Arch Neurol. 2012;69(11):1410-1416. doi: 10.1001/archneurol.2012.254.
41. de Carvalho M, Dengler R, Eisen A, et al. Electrodiagnostic criteria for diagnosis of ALS. Clin Neurophysiol. 2008;119(3):497-503. doi: 10.1016/j.clinph.2007.09.143.
42. Bakkar N, Boehringer A, Bowser R. Use of biomarkers in ALS drug development and clinical trials. Brain Res. 2015;1607:94-107. doi: 10.1016/j.brainres.2014.10.031.
43. Chiu IM, Chen A, Zheng Y, et al. T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS. Proc Natl Acad Sci U S A. 2008;105(46):17913-17918. doi: 10.1073/pnas.0804610105.
44. Budini M, Criollo A. Poly(GP) proteins: a potential pharmacodynamic marker in ALS and FTD. Ann Transl Med. 2017;5(24):504. doi: 10.21037/atm.2017.11.03.
45. Shepheard SR, Wuu J, Cardoso M, et al. Urinary p75ECD: A prognostic, disease progression, and pharmacodynamic biomarker in ALS. Neurology. 2017;88(12):1137-1143. doi: 10.1212/WNL.0000000000003741.
46. Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362(6415):59-62 [erratum in Rosen DR. Nature. 1993;364(6435):362]. doi: 10.1038/362059a0.
47. Kings College London. ALS online genetics database website. alsod.iop.kcl.ac.uk. Updated September 9, 2015. Accessed May 20, 2018.
48. Peters OM, Ghasemi M, Brown RH Jr. Emerging mechanisms of molecular pathology in ALS. J Clin Invest. 2015;125(5):1767-1779. doi: 10.1172/JCI71601.
49. Therrien M, Dion PA, Rouleau GA. ALS: recent developments from genetics studies. Curr Neurol Neurosci Rep. 2016;16(6):59. doi: 10.1007/s11910-016-0658-1.
50. Alves-Rodrigues A, Gregori L, Figueiredo-Pereira ME. Ubiquitin, cellular inclusions and their role in neurodegeneration. Trends Neurosci. 1998;21(12):516-520.
51. Kenna KP, Van Doormaal PT, Dekker AM, et al. NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. Nat Genet. 2016;48(9):1037-1042. doi: 10.1038/ng.3626.
52. Abel O, Powell JF, Andersen PM, Al-Chalabi A. ALSoD: a user-friendly online bioinformatics tool for amyotrophic lateral sclerosis genetics. Hum Mutat. 2012;33(9):1345-1351. doi: 10.1002/humu.22157.
53. Deng H, Gao K, Jankovic J. The role of FUS gene variants in neurodegenerative diseases. Nat Rev Neurol. 2014;10(6):337-348. doi: 10.1038/nrneurol.2014.78.
54. Boillée S, Vande Velde C, Cleveland DW. ALS: A disease of motor neurons and their nonneuronal neighbors. Neuron. 2006;52(1):39-59. doi: 10.1016/j.neuron.2006.09.018.
55. Andersen PM, Al-Chalabi A. Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol. 2011;7(11):603-615. doi: 10.1038/nrneurol.2011.150.
56. Harrison D, Mehta P, van Es MA, et al; Pooled Resource Open-Access ALS Clinical Trials Consortium. “ALS reversals”: demographics, disease characteristics, treatments, and co-morbidities. Amyotroph Lateral Scler Frontotemporal Degener. 2018:1-5. doi: 10.1080/21678421.2018.1457059.
57. A paradigm shift in ALS/MND clinic care: best practices from the patient perspective. ALS Worldwide website. alsworldwide.org/assets/team/staff/cvs/alsww_clinic-book-web_copy.pdf. Published 2014. Accessed May 21, 2018.
58. Amyotrophic lateral sclerosis: performance measurement set. American Academy of Neurology website. aan.com/siteassets/home-page/policy-and-guidelines/quality/quality-measures/12alsmeasurementset_pg.pdf. Published July 31, 2012. Accessed July 18, 2018.
59. de Almeida JP, Silvestre R, Pinto AC, de Carvalho M. Exercise and amyotrophic lateral sclerosis. Neurol Sci. 2012;33(1):9-15. doi: 10.1007/s10072-011-0921-9.
60. Jefferies KA, Bromberg MB. The role of a clinical pharmacist in a multidisciplinary amyotrophic lateral sclerosis clinic. Amyotroph Lateral Scler. 2012;13(2):233-236. doi: 10.3109/17482968.2011.636449.
61. Hartzfeld D. Familial amyotrophic lateral sclerosis (FALS) and genetic testing. ALS Association website. alsa.org/als-care/resources/publications-videos/factsheets/genetic-testing-for-als.html. Published 2018. Accessed May 22, 2018.
62. Genetic Alliance, Genetics and Public Policy Center at Johns Hopkins University, National Coalition for Health Professional Education in Genetics. Genetic Information Nondiscrimination Act website. ginahelp.org/GINAhelp.pdf. Published May 2010. Accessed May 27, 2018.
63. National Amyotrophic Lateral Sclerosis (ALS) Registry. Centers for Disease Control and Prevention website. cdc.gov/als/Default.html. Updated February 8, 2018. Accessed May 20, 2018.
64. Join the National ALS Registry. Centers for Disease Control and Prevention website. cdc.gov/als/ALSJoinALSRegistry.html. Updated February 8, 2018. Accessed May 20, 2018.
65. National ALS Biorepository. Centers for Disease Control and Prevention website. cdc.gov/als/ALSNationalBiorepository.html. Updated April 11, 2017. Accessed May 20, 2018.

 
PDF
 
Copyright AJMC 2006-2019 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
x
Welcome the the new and improved AJMC.com, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up