Currently Viewing:
Currently Reading
Study Shows That Volanesorsen Reduces Disease Burden in Patients With FCS
June 17, 2018 – Kelly Davio
Gene Editing Could Reduce Toxicity of CAR T Treatment in AML
June 15, 2018 – Laura Joszt
With Payer Coverage, Food Is Medicine Movement Takes Flight
June 15, 2018 – Mary Caffrey
The Common Factor in Models Trying to Predict COPD: Smoking
June 15, 2018 – Allison Inserro
5 Updates on Maternal Health in the United States
June 15, 2018 – Surabhi Dangi-Garimella, PhD
FDA Approves First Generic Version of Suboxone for Opioid Dependence
June 15, 2018 – Jaime Rosenberg
Experts Suggest Interventions for High-Need Patients
June 15, 2018 – Alison Rodriguez
What We're Reading: Government Doesn't Owe Insurers ACA Money; Hep A Outbreak; Risky Teen Behaviors
June 15, 2018 – AJMC Staff
This Week in Managed Care: June 15, 2018
June 15, 2018

CAR-T Treatment in Glioblastoma: Will the Effect Be Sustained?

Surabhi Dangi-Garimella, PhD
A new single-patient case study, published in the New England Journal of Medicine, has raised the possibility of using CAR-T cells in the treatment of glioblastoma, an aggressive form of brain tumor.
A significantly powerful form of immunotherapy, the chimeric antigen receptor (CAR)-T–cell treatment has so far been developed in patients with hematological cancers. However, a new single-patient case study, published in the New England Journal of Medicine, has raised the possibility of using CAR-T cells in the treatment of glioblastoma, an aggressive form of brain tumor.

The treatment was provided at City of Hope to a 50-year-old man who presented with glioblastoma in the right temporal lobe. Following standard treatment of tumor resection, radiation, and temozolomide, the patient relapsed. At that point, the patient was enrolled in a study evaluating the safety and efficacy of IL13Rα2-targeted CAR-T cells. IL13Rα2 is a glioma-associated antigen linked to a reduced rate of survival. The authors wrote that based on their previous study, they improved the antitumor potency and T cell persistence of the IL13Rα2-targeted CAR-T cells by including a 4-1BB (CD137) costimulation domain and a mutated IgG4-Fc linker.

By the time the patient was administered the IL13BBζ–CAR-T cells, the tumor had progressed to a multifocal leptomeningeal glioblastoma in both cerebral hemispheres. The patient underwent surgical resection of 3 of the 5 developing tumors. An initial single infusion of 2×106 IL13BBζ–CAR-T cells was followed by 5 infusions of 10×106 cells, along with 6 weekly intracavitary infusions of IL13BBζ–CAR-T cells in the resected cavity of tumor 1. Safety and tumor response were assessed after the third and sixth infusions.

The authors report that while the tumor that received local treatment remained stable for 45 days after surgery, the remaining 4 tumors (2 resected and 2 non-resected) continued to progress. Additionally, 2 new lesions developed near the previously resected tumors. The patient also had metastasis to the spine.

Since the infusions could successfully prevent local tumor recurrence, without any effect on tumor development or progression at distant sites, the patient was administered 10 intraventricular infusions of IL13BBζ–CAR-T cells without any other treatment. Following the first 3 infusions (day 133), a significant reduction in the size of all intracranial and spinal tumors was observed. By the 5th infusion (day 190) all tumors had shrunk by 77% to 100%. Following the last 5 intraventricular infusions, the tumors remained undetectable by positron emission tomography and could not be measured by magnetic resonance imaging. While the response was sustained for 7.5 months following the first CAR-T treatment, tumors developed at 4 new locations. Preliminary evidence suggests a decrease in expression of the IL13Rα2 receptor as a cause of the recurrence.

In terms of safety, no grade 3 or higher toxicity was observed during the study period, but grade 1 or 2 events (such as headaches, generalized fatigue, myalgia, and olfactory auras) were noted within 72 hours following the T-cell infusions.

Reacting to these results, Jae Park, MD, a hematologist-oncologist who specializes in CAR-T therapy at Memorial Sloan Kettering Cancer Center told STAT news, “I can’t say this paper’s solved the problem of solid tumors, or this is the way to treat them. But it’s the first trial to show an objective response in glioblastoma, and suggests this is one way to get around the limitations of CAR T.”


Brown CE, Alizadeh D, Starr R, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016 Dec 29;375(26):2561-9. doi: 10.1056/NEJMoa1610497.

Copyright AJMC 2006-2018 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
Welcome the the new and improved, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up

Sign In

Not a member? Sign up now!