Currently Viewing:
The American Journal of Managed Care May 2017
Currently Reading
Drivers of Excess Costs of Opioid Abuse Among a Commercially Insured Population
Lauren M. Scarpati, PhD; Noam Y. Kirson, PhD; Miriam L. Zichlin, MPH; Zitong B. Jia, BA; Howard G. Birnbaum, PhD; and Jaren C. Howard, PharmD
Assessing the Effect of the VHA PCMH Model on Utilization Patterns Among Veterans With PTSD
Ian Randall, PhD; Charles Maynard, PhD; Gary Chan, PhD; Beth Devine, PhD; and Chris Johnson, PhD
State Prescription Drug Monitoring Programs and Fatal Drug Overdoses
Young Hee Nam, PhD; Dennis G. Shea, PhD; Yunfeng Shi, PhD; and John R. Moran, PhD
Disparities in Diabetes and Hypertension Care for Individuals With Serious Mental Illness
Junqing Liu, PhD; Jonathan Brown, PhD; Suzanne Morton, MPH; D.E.B. Potter, MS; Lisa Patton, PhD; Milesh Patel, MS; Rita Lewis, MPH; and Sarah Hudson Scholle, DrPH
The Cost of Adherence Mismeasurement in Serious Mental Illness: A Claims-Based Analysis
Jason Shafrin, PhD; Felicia Forma, BSc; Ethan Scherer, PhD; Ainslie Hatch, PhD; Edward Vytlacil, PhD; and Darius Lakdawalla, PhD
Prescription Opioid Registry Protocol in an Integrated Health System
G. Thomas Ray, MBA; Amber L. Bahorik, PhD; Paul C. VanVeldhuisen, PhD; Constance M. Weisner, DrPH, MSW; Andrea L. Rubinstein, MD; and Cynthia I. Campbell, PhD, MPH
Opioid Prescribing for Chronic Pain in a Community-Based Healthcare System
Robert J. Romanelli, PhD; Laurence I. Ikeda, MD; Braden Lynch, PharmD; Terri Craig, PharmD; Joseph C. Cappelleri, PhD; Trevor Jukes, MS; and Denis Y. Ishisaka, PharmD
The Association of Mental Health Program Characteristics and Patient Satisfaction
Austin B. Frakt, PhD; Jodie Trafton, PhD; and Steven D. Pizer, PhD
Medicaid Prior Authorization and Opioid Medication Abuse and Overdose
Gerald Cochran, PhD; Adam J. Gordon, MD, MPH; Walid F. Gellad, MD, MPH; Chung-Chou H. Chang, PhD; Wei-Hsuan Lo-Ciganic, PhD, MS, MSPharm; Carroline Lobo, MS; Evan Cole, PhD; Winfred Frazier, MD; Ping

Drivers of Excess Costs of Opioid Abuse Among a Commercially Insured Population

Lauren M. Scarpati, PhD; Noam Y. Kirson, PhD; Miriam L. Zichlin, MPH; Zitong B. Jia, BA; Howard G. Birnbaum, PhD; and Jaren C. Howard, PharmD
The healthcare burden of opioid abuse is substantial; abusers often have complex healthcare needs and may require care beyond that which is required to treat abuse.
In the 6 months after the index date, 53% ($4215) of excess healthcare costs could be attributed to care in a rehabilitation facility setting, 31% ($2429) in an inpatient setting, 8% ($610) in an ED setting, 5% ($432) on prescription drugs, and 4% ($284) on outpatient care. Similarly, opioid dependence, abuse, and poisoning (30%) and nonopioid drug/alcohol abuse/dependence (28%) were prominent excess cost drivers following the formal abuse diagnosis. As in the pre-index period, we also observed mental health-related (7%) and back pain-related (2%) conditions associated with the excess costs of abuse. 

Figure 3 shows the diagnosed prevalence and incidence for opioid abuse, dependence, and overdose/poisoning combined. Prevalence rates between 2010 and 2014 nearly doubled (2.06 per 1000 in 2010 to 4.00 per 1000 in 2014), whereas incidence rates exhibited a flatter trend (1.46 per 1000 in 2010, to 2.46 per 1000 in 2014). As described in the Outcomes subsection of the Methods section above, combining incidence rates (the average incidence rate per 1000 for 2012 to 2014 is 2.16) and average annual excess costs ($10,989), we arrived at an estimate of $1.98 PMPM in costs to payers of opioid abuse.


To replicate the original analysis, the analyses above first examined the excess costs of opioid abuse and highlighted the substantial burden imposed on commercial payers: on average, a diagnosed opioid abuser had excess annual healthcare costs of $10,989. This figure is within the range of estimates from the existing literature3-5 and translates into $1.98 PMPM. This is comparable to the $14,810 in excess costs associated with opioid abuse in the original analysis.7 The difference between $10,989 and $14,810 may be explained by the unmatched patients in the Truven analysis. The match rate in Truven was 93% compared with 99% in Optum. The 7% of unmatched patients in Truven tended to be considerably more costly than those who matched; the much higher Optum match rate translated into including many of these costlier patients in that sample, resulting in higher excess cost estimates. Should the costlier Truven patients have matched, we may have observed very similar excess costs as those from Optum.

Next, the trajectory of excess costs by month was compared with that in the original analysis and confirmed the following: abusers’ mean healthcare costs began to build up prior to the formal diagnosis, spiked during the diagnosis month, and then flattened out. Notably, excess costs did not return to baseline levels. This pattern is similar to one recently observed among patients with cardiovascular disease9: for both low- and high-risk cohorts, incremental costs were observed accumulating in the year prior to a new cardiovascular event (2012: €148-€589; for comparison to our estimates, 2015: US$197-US$784 [2012 currency conversion rate: 1 US dollar = 0.81 euros10; the Bureau of Labor Statistics medical care component of the Consumer Price index was used to adjust to 2015 US$11]), peaked in the year of the new event (2012: €8346- €8663; 2015: US$11,108-$11,530), and persisted above pre-event levels for 2 years thereafter (2012: €1228-€1732 in the second year after the new cardiovascular event; 2015: US$1634-US$2305). As noted within the literature, such prolonged costs post index may be associated with considerable long-term costs. The assessment of longer-term incremental costs of opioid abuse may be a fruitful area of future research from which payers could benefit. 

The final piece of the replication was to assess the drivers of excess costs. We found that a large proportion of excess costs was associated with opioid and nonopioid substance abuse (including alcohol), painful conditions (eg, intervertebral disc disorders, spondylosis, allied disorders), and mental health disorders (eg, episodic mood disorders, depression, anxiety). The associations between opioid and nonopioid substance abuse and between mental health disorders and substance abuse12,13 are consistent with the existing literature. 

Other identified cost drivers were associated with vague diagnoses, including observation and evaluation for suspected conditions not found, general symptoms, and encounter for other and unspecified procedures and aftercare. One area for further research may be an evaluation of the extent to which such ambiguous diagnoses are associated with drug-seeking behavior. These predictors may help to identify improved treatment strategies for these complex patients by providing a rationale for an assessment for opioid use disorder. 

Although it is well documented in the literature that the excess costs of opioid abuse impose a substantial burden on payers, this analysis contributes by highlighting the drivers of those costs. As evidenced in this analysis, patients given an opioid abuse diagnosis often present with numerous other complex and often costly conditions. This multifaceted clinical paradigm, along with recent increases in both the prevalence and incidence of opioid abuse, underscore the importance to public health and the healthcare system of diagnosing and treating opioid abuse and the multiple comorbidities that may accompany it. A more thorough understanding of the drivers of these costs may enable payers and policy makers to implement policies and patient care guidelines to more rapidly identify abuse and associated comorbidities, which may, in turn, help to lower costs.


First, the results rely on the accuracy of the administrative data. Therefore, any miscoding could affect our results, although we have no reason to suspect that any inaccuracies in the data affected the abusers or nonabuser control patients differently. Second, by definition, undiagnosed opioid abusers do not receive any of the ICD-9-CM diagnosis codes for abuse, and it is not out of the question that undiagnosed abusers may be included in the nonabuser cohort. Although the extent to which this applies to this particular sample is unknown, if undiagnosed abusers are more costly than a true nonabuser population, this would suggest that the estimated excess costs of diagnosed abuse understate the true excess cost differential between abusers and true nonabusers. Third, while our definition of abusers includes patients with overdose/poisoning diagnoses, the administrative data do not differentiate between patients who intentionally versus unintentionally overdose. Some unintentional overdoses may not reflect an abuse or misuse issue. Lastly, our findings may not generalize to noncommercially insured populations, although existing studies evaluating the excess costs of opioid abuse on other populations have generated similar estimates.14 


This study confirms the findings contained in a recent publication: opioid abuse is costly to payers. Within a commercially insured population, opioid abuse, dependence, and overdose/poisoning were associated with $1.98 PMPM, or $10,989, in excess costs in the year centered around the initial diagnosis. The trajectory of opioid abuse–related costs is also robust across analyses: excess costs begin increasing 9 months prior to the index date, driven by nonopioid drug and alcohol abuse. Following diagnosis, costs were largely driven by the treatment of opioid abuse and nonopioid drug and alcohol abuse, as well as back pain and mental health-related conditions. Opioid abuse often occurs amidst a background of multiple comorbidities, including polysubstance abuse and other psychiatric disorders. Understanding the context in which opioid abuse occurs may promote a more comprehensive treatment approach among payers and providers.


The authors gratefully acknowledge the contributions of Caroline J. Enloe, Aliya Dincer, and Jessica Hanway. 

Author Affiliations: Analysis Group, Inc (LMS, NYK, MLZ, ZBJ, HGB) Boston, MA; Purdue Pharma, L.P. (JCH) Stamford, CT.

Source of Funding: This study was funded by Purdue Pharma L.P.

Author Disclosures: Dr Howard was an employee of Purdue Pharma L.P. at the time of this study, and Drs Scarpati, Kirson, and Birnbaum, and Ms Zichlin and Mr Jia are employed by Analysis Group, Inc, which received research funding from Purdue Pharma L.P. for this study.

Authorship Information: Concept and design (LMS, NYK, ZBJ, HGB, JCH, MLZ); acquisition of data (NYK); analysis and interpretation of data (LMS, NYK, ZBJ, HGB, JCH, MLZ); drafting of the manuscript (LMS, NYK, JCH); critical revision of the manuscript for important intellectual content (LMS, NYK, HGB, JCH); statistical analysis (ZBJ, MLZ); and supervision (NYK, HGB). 

Address Correspondence to: Lauren M. Scarpati, PhD, Analysis Group, Inc, 111 Huntington Ave, 14th Floor, Boston, MA 02199. E-mail:

1. Chou R, Fanciullo GJ, Fine PG, et al; American Pain Society-American Academy of Pain Medicine Opioids Guidelines Panel. Clinical guidelines for the use of chronic opioid therapy in chronic noncancer pain. J Pain. 2009;10(2):113-130. doi: 10.1016/j.jpain.2008.10.008.

2. Birnbaum HG, White AG, Schiller M, Waldman T, Cleveland JM, Roland CL. Societal costs of prescription opioid abuse, dependence, and misuse in the United States. Pain Med. 2011;12(4):657-667. doi: 10.1111/j.1526-4637.2011.01075.x. 

3. Oderda GM, Lake J, Rüdell K, Roland CL, Masters ET. Economic burden of prescription opioid misuse and abuse: a systematic review. J Pain Palliat Care Pharmacother. 2015;29(4):388-400. doi: 10.3109/15360288.2015.1101641.

4. Meyer R, Patel AM, Rattana SK, Quock TP, Mody SH. Prescription opioid abuse: a literature review of the clinical and economic burden in the United States. Popul Health Manag. 2014;17(6):372-387. doi: 10.1089/pop.2013.0098.

5. Rice JB, Kirson NY, Shei A, et al. Estimating the costs of opioid abuse and dependence from an employer perspective: a retrospective analysis using administrative claims data. Appl Health Econ Health Policy. 2014;12(4):435-446. doi: 10.1007/s40258-014-0102-0.

6. Health research data for the real world: the MarketScan Databases. Truven Health website. Published 2012. Accessed March 29, 2017.

7. Kirson NY, Scarpati LM, Enloe CJ, Dincer AP, Birnbaum HG, Mayne TJ. The economic burden of opioid abuse: updated findings. Manag Care Spec Pharm. 2017;23(4):427-445. doi: 10.18553/jmcp.2017.16265.

8. Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav Res. 2011;46(3):399-424.

9. Hallberg S, Gandra SR, Fox KM, et al. Healthcare costs associated with cardiovascular events in patients with hyperlipidemia or prior cardiovascular events: estimates from Swedish population-based register data. Eur J Health Econ. 2016;17(5):591-601. doi: 10.1007/s10198-015-0702-0.

10. Yearly average currency exchange rates. Internal Revenue Service website. Updated December 12, 2016. Accessed December 22, 2016.

11. CPI databases. All urban consumers (current series) medical care component (CUUR0000SAM). Bureau of Labor Statistics website. Published 2016. Accessed December 22, 2016. 

12. Edlund MJ, Steffick D, Hudson T, Harris KM, Sullivan M. Risk factors for clinically recognized opioid abuse and dependence among veterans using opioids for chronic non-cancer pain. Pain. 2007;129(3):355-362. 

13. Ross HE, Glaser FB, Germanson T. The prevalence of psychiatric disorders in patients with alcohol and other drug problems. Arch Gen Psychiatry. 1988;45(11):1023-1031.

14. Baser O, Xie L, Mardekian J, Schaaf D, Wang L, Joshi AV. Prevalence of diagnosed opioid abuse and its economic burden in the Veterans Health Administration. Pain Pract. 2014;14(5):437-445. doi: 10.1111/papr.12097.
Copyright AJMC 2006-2019 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
Welcome the the new and improved, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up