Currently Viewing:
The American Journal of Managed Care May 2017
Drivers of Excess Costs of Opioid Abuse Among a Commercially Insured Population
Lauren M. Scarpati, PhD; Noam Y. Kirson, PhD; Miriam L. Zichlin, MPH; Zitong B. Jia, BA; Howard G. Birnbaum, PhD; and Jaren C. Howard, PharmD
Critical Incident Stress Debriefing After Adverse Patient Safety Events
Reema Harrison, PhD, MSc, BSc, and Albert Wu, MD, MPH
Assessing the Effect of the VHA PCMH Model on Utilization Patterns Among Veterans With PTSD
Ian Randall, PhD; Charles Maynard, PhD; Gary Chan, PhD; Beth Devine, PhD; and Chris Johnson, PhD
State Prescription Drug Monitoring Programs and Fatal Drug Overdoses
Young Hee Nam, PhD; Dennis G. Shea, PhD; Yunfeng Shi, PhD; and John R. Moran, PhD
Disparities in Diabetes and Hypertension Care for Individuals With Serious Mental Illness
Junqing Liu, PhD; Jonathan Brown, PhD; Suzanne Morton, MPH; D.E.B. Potter, MS; Lisa Patton, PhD; Milesh Patel, MS; Rita Lewis, MPH; and Sarah Hudson Scholle, DrPH
The Cost of Adherence Mismeasurement in Serious Mental Illness: A Claims-Based Analysis
Jason Shafrin, PhD; Felicia Forma, BSc; Ethan Scherer, PhD; Ainslie Hatch, PhD; Edward Vytlacil, PhD; and Darius Lakdawalla, PhD
Currently Reading
Prescription Opioid Registry Protocol in an Integrated Health System
G. Thomas Ray, MBA; Amber L. Bahorik, PhD; Paul C. VanVeldhuisen, PhD; Constance M. Weisner, DrPH, MSW; Andrea L. Rubinstein, MD; and Cynthia I. Campbell, PhD, MPH
The Association of Mental Health Program Characteristics and Patient Satisfaction
Austin B. Frakt, PhD; Jodie Trafton, PhD; and Steven D. Pizer, PhD
Medicaid Prior Authorization and Opioid Medication Abuse and Overdose
Gerald Cochran, PhD; Adam J. Gordon, MD, MPH; Walid F. Gellad, MD, MPH; Chung-Chou H. Chang, PhD; Wei-Hsuan Lo-Ciganic, PhD, MS, MSPharm; Carroline Lobo, MS; Evan Cole, PhD; Winfred Frazier, MD; Ping

Prescription Opioid Registry Protocol in an Integrated Health System

G. Thomas Ray, MBA; Amber L. Bahorik, PhD; Paul C. VanVeldhuisen, PhD; Constance M. Weisner, DrPH, MSW; Andrea L. Rubinstein, MD; and Cynthia I. Campbell, PhD, MPH
A flexible population-based prescription opioid registry was established for addressing a broad range of critical public health questions relating to prescription opioid use.
Among 2,480,030 adult KPNC members in 2011, 455,693 (18.3%) had at least 1 opioid fill at a KPNC pharmacy. Individuals with opioid use were different from individuals without opioid use on every characteristic, including being more likely to be female, older, white, have a chronic medical or psychiatric condition, and to have a diagnosis of opioid abuse/dependence or nonopioid substance use disorder (Table 1). 

The 455,693 individuals with opioid use had 474,045 unique episodes occurring in some part of 2011. Due to the 180-day gaps used when creating episodes, few individuals had more than 1 episode in 2011: 18,352 individuals had 2 episodes covering any part of 2011, and the rest had 1. After retaining the most severe episode per person, there were 112,089 long-term opioid episodes, 71,011 episodic episodes, and 272,593 acute episodes (Table 2). Long-term users were, on average, aged 56 years, and 61% were female. Forty percent of individuals with long-term opioid use received at least 1 diagnosis for a psychiatric disorder in 2011, 3% were diagnosed with opioid abuse/dependence, and 7% were diagnosed with a nonopioid substance use disorder. 

On average, long-term episodes were 1609 days long and included 54 opioid fills (Table 3). Because the opioid data spanned 2008 to 2014, it is possible that some episodes began prior to 2008 or continued after 2014; thus, episode durations may be underestimated. Among long-term opioid episodes, 27% began prior to July 1, 2008, and ended after June 30, 2014, and may be both left and right truncated. Another 17% of long-term episodes may have been left truncated only, and 24% may have been right truncated only.

Among individuals with long-term use, the mean MDDE was 38.98 mg, with the highest MDDE for long-acting Schedule II opioids. However, use of those opioids was highly skewed (median MDDE was 0), with only 28% of long-term users using any long-acting Schedule II opioids. Among individuals with episodic and acute use, on the other hand, Schedule III opioids had the highest mean MDDE. Individuals with episodic use used at lower levels than long-term users, and tended to have substantial gaps between fills; therefore, they had a much lower mean MDDE (5.37 mg). Individuals with long-term use also had higher mean MDDE than episodic or acute users. 

Sedative/hypnotics were used by 76% of individuals with long-term opioid use during their episodes, and for an average of 34% of episode days. Among individuals with acute use, 16% used sedative/hypnotics during their (much shorter) acute episode.

Among all individuals using prescription opioids in 2011, 175,558 (39%) were opioid naïve. Of these, 85,305 had continuous KPNC membership from 2008 to 2014 (n = 81,809), or until death (n = 3496), and were the analytic sample for initiating long-term opioid use (Table 4). Multivariate analysis indicated that individuals at least 80 years of age were more likely to become long-term users than individuals younger than 50 years of age. Compared with whites, Asians and Hispanics were less likely to become long-term users (odds ratio [OR], 0.41; 95% confidence interval [CI], 0.35-0.47, and OR, 0.67; 95% CI, 0.60-0.75, respectively) (Table 5). Individuals in more-deprived neighborhoods were more likely to become long-term users than those in the least-deprived neighborhoods (most-deprived neighborhood: OR, 1.26; 95% CI, 1.12-1.43). 

Numerous conditions were associated with long-term opioid use, including chronic pain (OR, 2.57; 95% CI, 2.26-2.93), nonopioid substance use disorders (OR, 2.25; 95% CI, 1.89-2.69), psychiatric disorders (OR, 1.22; 95% CI, 1.12-1.33), and arthritis (OR, 1.41; 95% CI, 1.31-1.52). Use of sedatives/hypnotics was associated with increased odds of becoming a long-term user (OR, 1.67; 95% CI, 1.54-1.81, vs no use). Even after adjusting for diagnosed conditions, inpatient hospital days and use of nonopioid medications in the prior year remained predictive of the long-term user. On the other hand, outpatient office visits in the prior year were associated with lower odds of becoming a long-term user. 


This study developed a protocol for an EHR-based prescription opioid registry that can be used to address important research questions about prescription opioid use in noncancer patients on a population level. The current paper also addressed initial questions about the characteristics of prescription opioid users and what predicts initiating long-term use.

Consistent with prior literature,3,22,23 individuals who used opioids were older, more likely to be white, and were more clinically complex patients, with more medical and psychiatric conditions and substance use disorders than individuals not using opioids. Further, a considerable portion of patients was using opioids long term. Patients using opioids long term are especially important to identify, because duration of use is associated with abuse, overdose, and other AEs.3,16,21,24-26 As prior researchers found,22,27 we found individuals with long-term opioid use to be more likely than those with shorter-term use to have higher daily dosages, chronic medical or psychiatric conditions, and opioid or other substance use disorders. Given the current epidemic of misuse and overdose, identifying long-term users with population-based data can help health systems identify patients early, monitor them, and refer them to specialty services (eg, substance use treatment, pain management) as needed. 

Our analysis of “opioid-naïve” users indicated that only 4.2% went on to long-term use within 3 years, although at any given time, the percentage of long-term opioid users is quite high (25%). Although individual risk is low, at a population level, this is consistent with the high level of AEs observed in recent years. 

Predictors of developing long-term use included chronic pain, sedative/hypnotic use, psychiatric disorders, and nonopioid substance use disorders. Concurrent use of sedative/hypnotics and opioids has been shown to be associated with a substantial increased risk of death from drug overdose.8,25,26,28 Federal and health-system guidelines have focused on reducing high daily dosages, and also on restricting concurrent opioid and sedative/hypnotic use.2,29 Individuals who lived in more-deprived neighborhoods were also more likely to develop long-term opioid use; to our knowledge, this is a relationship not previously identified in other research studies. Our data do not contain information on pain severity or control. However, findings may suggest that individuals residing in more-deprived neighborhoods (which may also be a proxy for individual deprivation) have more complex health status, or fewer nonmedication treatment alternatives available—these hypotheses deserve further study.

There is increased interest in using registries to address critical clinical and policy questions.30 A goal of this project was to develop a protocol that can serve as a reference for other clinical and research teams addressing similar questions. Study algorithms can be used in health systems with pharmacy dispensation data and encounter data. For example, because our approach used the VDW, investigators from 19 other health systems in the Health Care Systems Research Network can also use the VDW to similarly address important questions about prescription opioid use. We recognize this is not without challenges, and would require adaptations, particularly for systems that have dissimilar EHR data elements or claims data. However, by sharing details about our methodology, we hope to contribute to developing harmonized approaches across systems to address the opioid epidemic. 


Our measures of opioid and sedative/hypnotic use depend on pharmacy dispensation data, which is commonly used in the literature, and which we consider a reasonable proxy for use. Uncertainty also exists about calculating use for overlapping fills. However, in contrast to some prior studies, we make explicit our assumptions for overlapping fills. The vast majority of KPNC members fill prescriptions at KPNC pharmacies,14 but we miss potential non-KPNC pharmacy fills. Although all registry members filled an opioid prescription at KPNC, it is possible that individuals using opioids may be more likely to seek opioid prescriptions externally. Identification of medical and psychiatric conditions, and substance use disorders, is based on diagnoses recorded in the EHR as part of routine care; thus, individuals with more visits may have more opportunity to receive a diagnosis. Also, there can be truncation of episodes that began prior to 2008 or continued post 2014 and, therefore, possible underestimation of long-term episode duration. These limitations are similar to those of other EHR-data–based studies. Finally, generalizability to other systems may be limited, although study algorithms can be adapted. 


This study established a population-based opioid registry that is flexible, and can be used to address important questions of prescription opioid use. Future analyses will leverage the prescription opioid registry and its algorithms to examine prescription opioid misuse, fatal and nonfatal overdose, and health service utilization and cost. Thus, with this same registry, we will be able to address a broad range of critical public health issues relating to prescription opioid use. 


The authors gratefully acknowledge Agatha Hinman, BS, for her assistance in preparing the manuscript.

Author Affiliations: Division of Research, Kaiser Permanente Medical Care Program, Northern California Region (GTR, CMW, CIC), Oakland, CA; Department of Psychiatry, University of California (ALB, CMW), San Francisco, CA; The Emmes Corporation (PCV), Rockville, MD; Kaiser Permanente, Department of Anesthesiology, Santa Rosa Medical Center (ALR), Santa Rosa, CA. 

Source of Funding: This work was funded by the National Institute on Drug Abuse, Clinical Trials Network, UG1DA040314-01S1. In addition, Dr Bahorik was supported by National Institute on Drug Abuse training grant T32DA007250.

Author Disclosures: Mr Ray has received research support on grants to Kaiser Permanente Division of Research in the past 3 years from Pfizer, Merck, Genentech, and Purdue Pharma. Dr Campbell has been supported on a subcontract to the Kaiser Permanente Division of Research by Purdue Pharma. The remaining authors report no relationship or financial interest with any entity that would pose a conflict of interest with the subject matter of this article. 

Authorship Information: Concept and design (GTR, ALB, CMW, CIC); acquisition of data (GTR, CIC); analysis and interpretation of data (GTR, ALB, PCV, CMW, ALR, CIC); drafting of the manuscript (GTR, ALB, PCV, CMW, ALR, CIC); critical revision of the manuscript for important intellectual content (GTR, ALB, PCV, CMW, ALR, CIC); statistical analysis (GTR); obtaining funding (ALB, CIC); and supervision (CIC). 

Address Correspondence to: G. Thomas Ray, MBA, Division of Research, Kaiser Permanente, 2000 Broadway, Oakland, CA. E-mail:

1. Kuehn BM. Opioid prescriptions soar: increase in legitimate use as well as abuse. JAMA. 2007;297(3):249-251. doi: 10.1001/jama.297.3.249.

2. Draft CDC guidelines for prescribing opioids for chronic pain. CDC website. Updated January 2016. Accessed February 17, 2016.

3. Sullivan MD, Howe CQ. Opioid therapy for chronic pain in the United States: promises and perils. Pain. 2013;154(suppl 1):S94-S100. doi: 10.1016/j.pain.2013.09.009.

4. Volkow ND, McLellan TA. Curtailing diversion and abuse of opioid analgesics without jeopardizing pain treatment. JAMA. 2011;305(13):1346-1347. doi: 10.1001/jama.2011.369.

5. Behavioral health trends in the United States: results from the 2014 National Survey on Drug Use and Health [HHS pub no. SMA 15-4927, NSDUH Series H-50]. Substance Abuse and Mental Health Services Adminstration website. Published September 2015. Accessed March 7, 2016.

6. National Admissions to Substance Abuse Treatment Services. Treatment Episode Dataset (TEDS): 2003-2013. BHSIS Series S-75, HHS Publication No. (SMA) 15-4934. Substance Abuse and Mental Health Services Administration website. 2015. Accessed March 7, 2016. 

7. Number and age-adjusted rates of drug-poisoning deaths involving opioid analgesics and heroin: United States, 1999-2014. CDC website, Updated January 2016. Accessed March 7, 2016. 

8. Park TW, Saitz R, Ganoczy D, Ilgen MA, Bohnert AS. Benzodiazepine prescribing patterns and deaths from drug overdose among US veterans receiving opioid analgesics: case-cohort study. BMJ. 2015;350:h2698. doi:

9. Von KM, Saunders K, Thomas RG, et al. De facto long-term opioid therapy for noncancer pain. Clin J Pain. 2008;24(6):521-527. doi: 10.1097/AJP.0b013e318169d03b.

10. Weisner CM, Campbell CI, Ray GT, et al. Trends in prescribed opioid therapy for non-cancer pain for individuals with prior substance use disorders. Pain. 2009;145(3):287-293. doi: 10.1016/j.pain.2009.05.006.

11. Campbell CI, Weisner C, Leresche L, et al. Age and gender trends in long-term opioid analgesic use for noncancer pain. Am J Public Health. 2010;100(12):2541-2547. doi: 10.2105/AJPH.2009.180646.

12. Gordon NP. Similarity of the adult Kaiser Permanente membership in Northern California to the insured and general population in Northern California: statistics from the 2007 California Health Interview Survey. Published January 2012. Accessed March 14, 2017.

13. Ross TR, Ng D, Brown JS, et al. The HMO Research Network Virtual Data Warehouse: a public data model to support collaboration. EGEMS (Wash DC). 2014;2(1):1049. doi: 10.13063/2327-9214.1049.

14. Selby JV, Smith DH, Johnson ES, Raebel MA, Friedman GD, McFarland BH. Kaiser Permanente Medical Care Program. In: Strom BL, ed. Pharmacoepidemiology. 4th ed. New York, NY: Wiley; 2005. 

15. Boudreau D, Von Korff M, Rutter CM, et al. Trends in long-term opioid therapy for chronic non-cancer pain. Pharmacoepidemiol Drug Saf. 2009;18(12):1166-1175. doi: 10.1002/pds.1833.

16. Bohnert AS, Valenstein M, Bair MJ, et al. Association between opioid prescribing patterns and opioid overdose-related deaths. JAMA. 2011;305(13):1315-1321. doi: 10.1001/jama.2011.370.

17. A compass for understanding and using American Community Survey data: what general data users need to know. US Census Bureau website. Published October 2008. Accessed March 14, 2017.

18. American Community Survey. US Census Bureau website.
Accessed January 24, 2016.

19. Stoddard PJ, Laraia BA, Warton EM, et al. Neighborhood deprivation and change in BMI among adults with type 2 diabetes: the Diabetes Study of Northern California (DISTANCE). Diabetes Care. 2013;36(5):1200-1208. doi: 10.2337/dc11-1866.

20. Young JQ, Kline-Simon AH, Mordecai DJ, Weisner C. Prevalence of behavioral health disorders and associated chronic disease burden in a commercially insured health system: findings of a case-control study. Gen Hosp Psychiatry. 2015;37(2):101-108. doi: 10.1016/j.genhosppsych.2014.12.005.

21. Edlund MJ, Martin BC, Russo JE, Devries A, Braden JB, Sullivan MD. The role of opioid prescription in incident opioid abuse and dependence among individuals with chronic noncancer pain: the role of opioid prescription. Clin J Pain. 2014;30(7):557-564. doi: 10.1097/AJP.0000000000000021.

22. Edlund MJ, Martin BC, Devries A, Fan MY, Braden JB, Sullivan MD. Trends in use of opioids for chronic noncancer pain among individuals with mental health and substance use disorders: the TROUP study. Clin J Pain. 2010;26(1):1-8. doi: 10.1097/AJP.0b013e3181b99f35.

23. Edlund MJ, Austen MA, Sullivan MD, et al. Patterns of opioid use for chronic noncancer pain in the Veterans Health Administration from 2009 to 2011. Pain. 2014;155(11):2337-2343. doi: 10.1016/j.pain.2014.08.033.

24. Saunders KW, Dunn KM, Merrill JO, et al. Relationship of opioid use and dosage levels to fractures in older chronic pain patients. J Gen Intern Med. 2010;25(4):310-315. doi: 10.1007/s11606-009-1218-z.

25. Turner BJ, Liang Y. Drug overdose in a retrospective cohort with non-cancer pain treated with opioids, antidepressants, and/or sedative-hypnotics: interactions with mental health disorders. J Gen Intern Med. 2015;30(8):1081-1096. doi: 10.1007/s11606-015-3199-4.

26. Dunn KM, Saunders KW, Rutter CM, et al. Opioid prescriptions for chronic pain and overdose: a cohort study. Ann Intern Med. 2010;152(2):85-92. doi: 10.7326/0003-4819-152-2-201001190-00006.

27. Richardson LP, Russo JE, Katon W, et al. Mental health disorders and long-term opioid use among adolescents and young adults with chronic pain. J Adolesc Health. 2012;50(6):553-558. doi: 10.1016/j.jadohealth.2011.11.011.

28. Calcaterra S, Glanz J, Binswanger IA. National trends in pharmaceutical opioid related overdose deaths compared to other substance related overdose deaths: 1999-2009. Drug Alcohol Depend. 2013;131(3):263-270. doi: 10.1016/j.drugalcdep.2012.11.018.

29. Trescott CE, Beck RM, Seelig MD, Von Korff MR. Group Health’s initiative to avert opioid misuse and overdose among patients with chronic noncancer pain. Health Aff (Millwood). 2011;30(8):1420-1424. doi: 10.1377/hlthaff.2011.0759.

30. Gliklich RE, Dreyer NA, Leavy MB. Registries for Evaluating Patient Outcomes: A User’s Guide. 3rd ed. Rockville, MD: Agency for Healthcare Research and Quality, 2014.
Copyright AJMC 2006-2020 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
Welcome the the new and improved, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up