Currently Viewing:
The American Journal of Managed Care July 2019
Currently Reading
Changing Demographics Among Populations Prescribed HCV Treatment, 2013-2017
Naoky Tsai, MD; Bruce Bacon, MD; Michael Curry, MD; Steven L. Flamm, MD; Scott Milligan, PhD; Nicole Wick, AS; Zobair Younossi, MD; and Nezam Afdhal, MD
Medicare’s Bundled Payment Model Did Not Change Skilled Nursing Facility Discharge Patterns
Jane M. Zhu, MD, MPP; Amol Navathe, MD, PhD; Yihao Yuan, MSc; Sarah Dykstra, BA; and Rachel M. Werner, MD, PhD
Number of Manufacturers and Generic Drug Pricing From 2005 to 2017
Inmaculada Hernandez, PharmD, PhD; Chester B. Good, MD, MPH; Walid F. Gellad, MD, MPH; Natasha Parekh, MD, MS; Meiqi He, MS; and William H. Shrank, MD, MSHS
Healthcare Network Analysis of Patients With Diabetes and Their Physicians
James Davis, PhD; Eunjung Lim, PhD; Deborah A. Taira, ScD; and John Chen, PhD
What Are the Potential Savings From Steering Patients to Lower-Priced Providers? A Static Analysis
Sunita M. Desai, PhD; Laura A. Hatfield, PhD; Andrew L. Hicks, MS; Michael E. Chernew, PhD; Ateev Mehrotra, MD, MPH; and Anna D. Sinaiko, PhD, MPP

Changing Demographics Among Populations Prescribed HCV Treatment, 2013-2017

Naoky Tsai, MD; Bruce Bacon, MD; Michael Curry, MD; Steven L. Flamm, MD; Scott Milligan, PhD; Nicole Wick, AS; Zobair Younossi, MD; and Nezam Afdhal, MD
From 2013 to 2017, the population of US patients prescribed treatment for chronic hepatitis C virus (HCV) changed, becoming predominantly treatment-naïve and having received care in nonacademic centers.
ABSTRACT

Objectives: We analyzed the demographics and disease characteristics of patients prescribed treatment for chronic hepatitis C virus (HCV) infection from 2013 through 2017, a time frame that encompasses the expansion of available direct-acting antiviral inhibitors.

Study Design: Retrospective analysis.

Methods: Using a proprietary disease-management program, data for 19,944 patients receiving HCV treatment were collected from providers and specialty pharmacies. Six-month time periods accounting for introductions of novel treatments were established as follows: December 2013 to May 2014 (n = 1438), simeprevir and sofosbuvir; October 2014 to March 2015 (n = 2242), ledipasvir/sofosbuvir and ombitasvir/paritaprevir/ritonavir plus dasabuvir; October 2015 to March 2016 (n = 5514), daclatasvir; July 2016 to December 2016 (n = 5562), elbasvir/grazoprevir and sofosbuvir/velpatasvir; and July 2017 to December 2017 (n = 5188), sofosbuvir/velpatasvir/voxilaprevir and glecaprevir/pibrentasvir. Changes over time were evaluated for statistical significance.

Results: In the 2013-2014 time period, 44% of patients receiving prescriptions for HCV treatment were treatment-experienced and 45% had cirrhosis. By 2017, only 14% were treatment-experienced (P <.001) and 21% had cirrhosis (P <.001). The percentage of patients with HCV genotype 1 increased from 69% to 87% from 2013-2014 to 2014-2015 (P <.001) but subsequently decreased to 74% in 2017 (P <.001). The percentage of patients receiving HCV prescriptions in an academic setting declined from 61% in 2013-2014 to 13% in 2017 (P <.001).

Conclusions: In the United States, since the introduction of interferon-free HCV regimens, the patient population prescribed treatment has changed, becoming predominantly treatment-naïve, without cirrhosis, and treated in nonacademic centers.

Am J Manag Care. 2019;25(7):319-323
Takeaway Points

Data from a network of providers and specialty pharmacies in the United States suggest that since the introduction of interferon-free treatments for chronic hepatitis C virus (HCV), the population receiving prescriptions has changed.
  • There has been a shift toward lower percentages of patients being treatment-experienced, having cirrhosis, or receiving care in academic centers. Although these changes were expected, published data were lacking.
  • As sites of care shift to nonacademic centers, there will be increased need to educate public health providers on screening, diagnosis, and treatment for HCV.
Chronic hepatitis C virus (HCV) infection affects approximately 2.7 million individuals in the United States1 and is associated with substantial morbidity and mortality. Liver-related complications of chronic HCV infection include cirrhosis, liver failure, and hepatocellular carcinoma.2 Treatment that results in a sustained virologic response reduces the risk of liver-related complications and can lead to regression of hepatic fibrosis.3 Prior to 2013, all treatment options for chronic HCV required peginterferon and ribavirin for 24 or 48 weeks and had limited efficacy with significant tolerability issues. Since 2013, the HCV treatment landscape has dramatically changed with the expansion of available direct-acting antiviral (DAA) inhibitors, providing multiple options for relatively short (8-12 weeks), simple (once-daily oral tablets), and better-tolerated regimens with high efficacy rates.4 From 2013 to 2017, 13 DAA inhibitors for HCV received approval from the FDA for use in 8 all-oral combination regimens.5 The first all-oral regimens contained simeprevir and sofosbuvir with ribavirin for HCV genotype 1 for up to 24 weeks, but the more recently approved regimens are pangenotypic and 8 or 12 weeks in duration.6,7

As treatment options expanded and improved, there was an expectation that the patient population initiating treatment for chronic HCV would shift from an older, treatment-experienced population with more fibrosis to a younger, treatment-naïve population with milder liver disease. However, there has been a lack of investigation into the specific demographics and disease characteristics of DAA-prescribed patients relative to the availability of different DAA regimens. Using data from a network of providers and specialty pharmacies in the United States, we evaluated changes in patient demographics and practice settings from 2013 to 2017.

METHODS

Data Collection

Clinical, demographic, prescription, and dispensing data for adult (≥18 years) patients with HCV were collected from specialty pharmacies and physicians in the United States through Trio Health’s proprietary Innervation Platform, a portal for managing patient information. Where mandated by state law, patients signed an electronic informed consent allowing data collection. Each clinician and specialty pharmacy providing data signed agreements attesting to compliance with all rules and regulations regarding the disclosure of patient information to a shared database. Embedded in the data collection process are quality control assessments that identify potential errors within fields (eg, data type mismatches, unit conversion errors) and between fields (eg, sequential order of events, improbable combinations of vital or laboratory measures). Data identified as questionable are routed back to the source for confirmation or correction. This data collection process and study plan were approved by Western Institutional Review Board as an institutional review board exemption under 45 CFR 46.101(b)(4).

The analysis population included patients from the 50 US states plus Washington, DC, who were prescribed care for HCV from 1 of 2827 providers and were serviced by 1 of 16 specialty pharmacies.

Analyses

Six-month evaluation periods that spanned the introductions of treatment options were established as follows: December 2013 to May 2014 (n = 1438), inclusive of simeprevir and sofosbuvir availability; October 2014 to March 2015 (n = 2242), inclusive of ledipasvir/sofosbuvir and ombitasvir/paritaprevir/ritonavir plus dasabuvir availability; October 2015 to March 2016 (n = 5514), inclusive of daclatasvir availability; July 2016 to December 2016 (n = 5562), inclusive of elbasvir/grazoprevir and sofosbuvir/velpatasvir availability; and July 2017 to December 2017 (n = 5188), inclusive of sofosbuvir/velpatasvir/voxilaprevir and glecaprevir/pibrentasvir availability (Figure). All statistical analyses were conducted using SPSS 25 (IBM Corp; Armonk, New York) or JMP 14.2 (SAS Institute Inc; Cary, North Carolina). Differences between periods were assessed in SPSS 25 using χ2 (categorical variables) or Kruskal-Wallis (continuous variables) tests with Bonferroni correction for repeated measures. Column (period) proportions for categorical variables were subsequently analyzed using Z tests with Bonferroni correction. Trends were evaluated using either the Cochran-Armitage (linear trends for proportions; JMP 14.2) or Jonckheere-Terpstra (ordered trends for continuous or ordinal variables; SPSS 25) test.


 
Copyright AJMC 2006-2019 Clinical Care Targeted Communications Group, LLC. All Rights Reserved.
x
Welcome the the new and improved AJMC.com, the premier managed market network. Tell us about yourself so that we can serve you better.
Sign Up