Treatment of acute myeloid leukemia (AML) has remained a challenge, partly because of an insufficient understanding of the molecular mechanisms that promote and maintain the leukemic state of AML cells.
Treatment of acute myeloid leukemia (AML) has remained a challenge, partly because of an insufficient understanding of the molecular mechanisms that promote and maintain the leukemic state of AML cells. Although it has long been recognized that mutations of the NPM1 gene play an important role in AML, it was not determined how the normal and the mutated forms of the NPM1 protein function.
“It is one of the biggest enigmas in AML,” said Margaret Goodell, PhD, of Baylor College of Medicine and senior author of a recent study published in Cancer Cell.1
The most common mutations associated with AML occur within the NPM1 gene, but no mechanism of action has been uncovered to date, she noted. In AML cells, NPM1 mutations result in abnormal cytoplasmic localization of the mutant protein (NPM1c), but it has not been known whether NPM1c is required to maintain the leukemic state.
Using CRISPR technology and new strategies developed in Goodell’s lab to readily target and manipulate only the mutant form of the protein (NPM1c), leaving the rest of the cell intact and allowing investigators to unlock cell function, the research team was able to show that the loss of the mutant NPM1 gene from the cytoplasm results in immediate downregulation of homeobox (HOX) genes, followed by differentiation. HOX genes direct the formation of many body structures during early embryonic development.
They also showed that inhibition of XPO1 (exportin 1, a nuclear export protein that is overactive in AML and which mediates transport of growth-regulatory proteins, including tumor suppressors2) relocalizes NPM1c to the nucleus, promotes differentiation of AML cells, and prolongs survival of NPM1-mutated leukemic mice.
“We found that when the NPM1 protein is allowed to leave the nucleus, it activates a set of genes that drive growth of leukemia,” said study coauthor Lorenzo Brunetti, MD, PhD. “If NPM1c can be prevented from entering the cytoplasm, AML cells will differentiate or die and cease to repopulate as cancer cells.”
The researchers conclude that the “exquisite dependency” of NPM1-mutant AML cells on NPM1c, which they describe, provides a rationale for the use of nuclear export inhibitors in a large fraction of patients with AML. The research has profound implications, according to Brunetti. There is already a drug available that inhibits the export of multiple proteins, including NPM1, from the nucleus to the cytoplasm.
“This gives us reasonable evidence that we can treat this type of AML with an existing therapy,” he said.
“Demonstrating this dependency in NPM1-mutant AML cell lines of distinct genetic backgrounds, in primary AML samples, as well as in mice, definitively proves that differentiation upon loss of mutant NPM1 from the cytoplasm results in a programmed response independent of co-occurring mutations,” the researchers conclude.
The study also extends the use of a CRISPR knockin strategy that will be useful in other contexts, the researchers say. Although the molecular mechanisms remain to be elucidated, the study team demonstrated that NPM1c facilitates HOX/MEIS1 expression, and that HOX genes support the leukemic state in NPM1-mutant AML.
“The data strongly suggest that the further development of therapeutic agents that act through nuclear export inhibition in the context of AML with mutated NPM1 is warranted,” the researchers note, and further study with XPO1 inhibitors should be pursued, ideally in the context of AML patients with mutated NPM1.
References
1. Brunetti L, Gundry MC, Sorcini D, et al. Mutant NPM1 maintains the leukemic state through HOX expression. Cancer Cell. 2018;34(3):499-512. doi: 10.1016/j.ccell.2018.08.005
2. Hing ZA, Fung HYJ, Ranganathan P, et al. Next-generation XPO1 inhibitor shows improved efficacy and in vivo tolerability in hematologic malignancies. Leukemia. 2016;30(12):2364-2372. doi: 10.1038/leu.2016.136.
Exagamglogene Autotemcel Meets End Points in Severe Sickle Cell Disease, β-Thalassemia
December 7th 2023Two posters set to be presented at the 65th American Society of Hematology Annual Meeting & Exposition met their primary and secondary end points regarding exagamglogene autotemcel therapy for sickle cell disease and β-thalassemia.
Read More
Oncology Onward: A Conversation With Dr Shereef Elnahal, Under Secretary for Health
April 20th 2023Shereef Elnahal, MD, MBA, under secretary for health at the Veterans Health Administration (VHA), sat for a conversation with our hosts Emeline Aviki, MD, MBA, Memorial Sloan Kettering Cancer Center, and Stephen Schleicher, MD, MBA, Tennessee Oncology, that covered the cancer footprint of the VHA.
Listen
NCCN Guidelines Update Adds Momelotinib Below Ruxolitinib for High-, Low-Risk Myelofibrosis
November 21st 2023Momelotinib was given category 2A and 2B status for patients with high- and low-risk myelofibrosis (MF) and MF with anemia. However, ruxolitinib retains a higher category of recommendation as a treatment for patients with MF.
Read More
Exploring Payer Coverage Decisions Following FDA Novel Drug Approvals
May 3rd 2022On this episode of Managed Care Cast, Ari D. Panzer, BS, lead author and researcher, then at Tufts Medical Center—now at Duke University—discusses the findings from his team’s investigation into coverage decisions by health plan insurers of the 66 drugs approved by the FDA in 2018.
Listen
Odevixibat Safe for Alagille Syndrome Based on Hepatic Changes
November 8th 2023Pooled phase 3 data presented at North American Society for Pediatric Gastroenterology, Hepatology & Nutrition 2023 support the benefit-risk profile of the ileal bile acid transport inhibitor in treating the rare liver disease.
Read More
Contributor: How Patients and Caregivers Can Be a Catalyst for Rare Disease Innovation
November 5th 2023Patient input and experiences play a crucial role in advancing rare disease research and therapy development, as they help define the disease, inform clinical trial design, and influence regulators and payers' decisions, ultimately serving as catalysts for innovation in the field.
Read More